Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
409
result(s) for
"Hidalgo, Alejandro A."
Sort by:
Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents
by
Millanao, Ana R.
,
Bucarey, Sergio A.
,
Hidalgo, Alejandro A.
in
Acids
,
Anti-Infective Agents - chemistry
,
Anti-Infective Agents - therapeutic use
2021
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Journal Article
The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium
by
Fuentes, Juan A.
,
Cabezas, Carolina E.
,
Castro-Severyn, Juan
in
Animals
,
Bacteria
,
Bacterial Proteins - genetics
2018
Salmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium that overcomes host immune system barriers for successful infection. The bacterium colonizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macrophages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mechanisms of Salmonella resistance to intracellular oxidative stress is not completely understood. The ArcAB two-component system is a global regulatory system that responds to oxygen. In this work, we show that the ArcA response regulator participates in Salmonella adaptation to changing oxygen levels and is also involved in promoting intracellular survival in macrophages and neutrophils, enabling S. Typhimurium to successfully establish a systemic infection.
Journal Article
Antimicrobial Activity and Phytochemical Characterization of Baccharis concava Pers., a Native Plant of the Central Chilean Coast
by
Rodríguez-Díaz, Maité
,
Cerda, Juan I.
,
Villagra, Nicolás A.
in
antimicrobial activity
,
Antimicrobial agents
,
Baccharis
2024
Few sclerophyllous plants from the central coast of Chile have been systematically studied. This work describes the phytochemical composition and antimicrobial properties of Baccharis concava Pers. (sin. B. macraei), a shrub found in the first line and near the Pacific coast. B. concava has been traditionally used by indigenous inhabitants of today’s central Chile for its medicinal properties. Few reports exist regarding the phytochemistry characterization and biological activities of B. concava. A hydroalcoholic extract of B. concava was prepared from leaves and small branches. Qualitative phytochemical characterization indicated the presence of alkaloids, steroids, terpenoids, flavonoids, phenolic, and tannin compounds. The antimicrobial activity of this extract was assessed in a panel of microorganisms including Gram-positive bacteria, Gram-negative bacteria, and pathogenic yeasts. The extract displayed an important antimicrobial effect against Gram-positive bacteria, Candida albicans, and Cryptococcus neoformans but not against Gram-negatives, for which an intact Lipopolysaccharide is apparently the determinant of resistance to B. concava extracts. The hydroalcoholic extract was then fractionated through a Sephadex LH-20/methanol–ethyl acetate column. Afterward, the fractions were pooled according to a similar pattern visualized by TLC/UV analysis. Fractions obtained by this criterion were assessed for their antimicrobial activity against Staphylococcus aureus. The fraction presenting the most antimicrobial activity was HPLC-ESI-MS/MS, obtaining molecules related to caffeoylquinic acid, dicaffeoylquinic acid, and quercetin, among others. In conclusion, the extracts of B. concava showed strong antimicrobial activity, probably due to the presence of metabolites derived from phenolic acids, such as caffeoylquinic acid, and flavonoids, such as quercetin, which in turn could be responsible for helping with wound healing. In addition, the development of antimicrobial therapies based on the molecules found in B. concava could help to combat infection caused by pathogenic yeasts and Gram-positive bacteria, without affecting the Gram-negative microbiota.
Journal Article
Low molecular weight sulfated chitosan efficiently reduces infection capacity of porcine circovirus type 2 (PCV2) in PK15 cells
by
Neira, Victor
,
Bucarey, Sergio A.
,
Hidalgo, Alejandro A.
in
Antibiotics
,
Antiviral activity
,
Antiviral agents
2022
Background
Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to vaccines, the availability of antiviral polymers provides an efficient and safe option for reducing the impact of these diseases. By virtue of their molecular weight and repetitious structure, polymers possess properties not found in small-molecule drugs. In this perspective, we focus on chitosan, a ubiquitous biopolymer, that adjusts the molecular weight and sulfated-mediated functionality can act as an efficient antiviral polymer by mimicking PCV2-cell receptor interactions.
Methods
Sulfated chitosan (Chi-S) polymers of two molecular weights were synthesized and characterized by FTIR, SEM–EDS and elemental analysis. The Chi-S solutions were tested against PCV2 infection in PK15 cells in vitro and antiviral activity was evaluated by measuring the PCV2 DNA copy number, TCID50 and capsid protein expression, upon application of different molecular weights, sulfate functionalization, and concentrations of polymer. In addition, to explore the mode of action of the Chi-S against PCV2 infection, experiments were designed to elucidate whether the antiviral activity of the Chi-S would be influenced by when it was added to the cells, relative to the time and stage of viral infection.
Results
Chi-S significantly reduced genomic copies, TCID50 titers and capsid protein of PCV2, showing specific antiviral effects depending on its molecular weight, concentration, and chemical functionalization. Assays designed to explore the mode of action of the low molecular weight Chi-S revealed that it exerted antiviral activity through impeding viral attachment and penetration into cells.
Conclusions
These findings help better understanding the interactions of PCV2 and porcine cells and reinforce the idea that sulfated polymers, such as Chi-S, represent a promising candidates for use in antiviral therapies against PCV2-associated diseases. Further studies in swine are warranted.
Journal Article
Oral Vaccine Formulation for Immunocastration Using a Live-Attenuated Salmonella ΔSPI2 Strain as an Antigenic Vector
by
Bucarey, Sergio A.
,
Hidalgo, Alejandro A.
,
Maldonado, Lucy D.
in
Adjuvants
,
Animal models
,
Animal species
2024
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry. In this study, a Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant lacking the pathogenicity island 2 (S. Typhimurium ΔSPI2) was used as a vehicle and mucosal adjuvant to deliver two genetic constructs in an attempt to develop an oral immunological preparation against gonadotropin hormone-releasing hormone (GnRH). S. Typhimurium ΔSPI2 was transformed to carry two plasmids containing a modified GnRH gene repeated in tandem (GnRXG/Q), one under eukaryotic expression control (pDNA::GnRXG/Q) and another under prokaryotic expression control (pJexpress::GnRXG/Q). A group of three male BALB/c mice were orally immunized and vaccination-boosted 30 days later. The oral administration of S. Typhimurium ΔSPI2 transformed with both plasmids was effective in producing antibodies against GnRXG/Q, leading to a decrease in serum testosterone levels and testicular tissue atrophy, evidenced by a reduction in the transverse tubular diameter of the seminiferous tubules and a decrease in the number of layers of the seminiferous epithelium in the testes of the inoculated mice. These results suggest that S. Typhimurium ΔSPI2 can be used as a safe and simple system to produce an oral formulation against GnRH and that Salmonella-mediated oral antigen delivery is a novel, yet effective, alternative to induce an immune response against GnRH in a murine model, warranting further research in other animal species.
Journal Article
Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan
2024
This work evaluated in vivo an experimental-multivalent-vaccine (EMV) based on three Porcine Respiratory Complex (PRC)-associated antigens: Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae (Mhyop) and M. hyorhinis (Mhyor), microencapsulated with sulfated chitosan (M- ChS + PRC-antigens), postulating chitosan sulphate (ChS) as a mimetic of the heparan sulfate receptor used by these pathogens for cell invasion. The EMV was evaluated physicochemically by SEM (Scanning-Electron-Microscopy), EDS (Energy-Dispersive-Spectroscopy), Pdi (Polydispersity-Index) and zeta potential. Twenty weaned pigs, distributed in four groups, were evaluated for 12 weeks. The groups 1 through 4 were as follows: 1-EMV intramuscular-route (IM), 2-EMV oral-nasal-route (O/N), 3-Placebo O/N (M-ChS without antigens), 4-Commercial-vaccine PCV2-Mhyop. qPCR was used to evaluate viral/bacterial load from serum, nasal and bronchial swab and from inguinal lymphoid samples. Specific humoral immunity was evaluated by ELISA. M-ChS + PRC-antigens measured between 1.3–10 μm and presented low Pdi and negative zeta potential, probably due to S (4.26%). Importantly, the 1-EMV protected 90% of challenged animals against PCV2 and Mhyop and 100% against Mhyor. A significant increase in antibody was observed for Mhyor (1-EMV and 2-EMV) and Mhyop (2-EMV), compared with 4-Commercial-vaccine. No difference in antibody levels between 1-EMV and 4-Commercial-vaccine for PCV2-Mhyop was observed. Conclusion: The results demonstrated the effectiveness of the first EMV with M-ChS + PRC-antigens in pigs, which were challenged with Mhyor, PCV2 and Mhyop, evidencing high protection for Mhyor, which has no commercial vaccine available.
Journal Article
Correction: The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium
by
Fuentes, Juan A.
,
Cabezas, Carolina E.
,
Castro-Severyn, Juan
in
Disseminated infection
,
Infections
,
Oxygen
2019
[This corrects the article DOI: 10.1371/journal.pone.0203497.].
Journal Article
Xylose Improves Antibiotic Activity of Chloramphenicol and Tetracycline against K. pneumoniae and A. baumannii in a Murine Model of Skin Infection
by
Mora, Guido C.
,
Hidalgo, Alejandro A.
,
García, Patricia
in
Acinetobacter baumannii
,
Analysis
,
Animal models
2018
Increased resistance to antimicrobials in clinically important bacteria has been widely reported. The major mechanism causing multidrug resistance (MDR) is mediated by efflux pumps, proteins located in the cytoplasmic membrane to exclude antimicrobial drug. Some efflux pumps recognize and expel a variety of unrelated antimicrobial agents, while other efflux pumps can expel only one specific class of antibiotics. Previously, we have reported that xylose decreases the efflux-mediated antimicrobial resistance in Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro. In this work, we assessed the effectiveness of combining xylose with antibiotics to kill resistant Acinetobacter baumannii and Klebsiella pneumoniae in a murine model of skin infection. Skin infections were established by seeding 109 bacteria onto eroded skin of mice. Mice treated with the antibiotic alone or with a mixture of glucose and antibiotics or xylose and antibiotics were compared to a control group that was infected but received no further treatment. We observed that the mixtures xylose-tetracycline and xylose-chloramphenicol produced a decrease of at least 10 times viable Acinetobacter baumannii and Klebsiella pneumoniae recovered from infected skin, compared with mice treated with the antibiotic alone. Our results show that xylose improves the antibiotic activity of tetracycline and chloramphenicol against efflux-mediated resistance Acinetobacter baumannii and Klebsiella pneumoniae, in a murine model of skin infection. We envision these combined formulations as an efficient treatment of skin infections with bacteria presenting efflux-mediated resistance, in both humans and animals.
Journal Article
RpoS integrates CRP, Fis, and PhoP signaling pathways to control Salmonella Typhi hlyE expression
by
Villagra, Nicolás A
,
Rodríguez, Leonardo M
,
Jofré, Matías R
in
Bacterial Proteins - metabolism
,
Bacteriology
,
Biological Microscopy
2014
Background
SPI-18 is a pathogenicity island found in some
Salmonella enterica
serovars, including
S.
Typhi. SPI-18 harbors two ORFs organized into an operon,
hlyE
and
taiA
genes, both implicated in virulence. Regarding the
hlyE
regulation in
S.
Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates
hlyE
expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of
hlyE
. Moreover, PhoP-dependent
hlyE
up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg
2+
. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of
hlyE
in
S.
Typhi and the integration of different environmental signals through global regulators.
Results
We found that Fis participates as a CRP-independent glucose-dependent down-regulator of
hlyE
. Also, Fis and CRP seem to exert the repression over
hlyE
through down-regulating
rpoS
. Moreover, PhoP up-regulates
hlyE
expression via
rpoS
under low pH and low Mg
2+
conditions.
Conclusions
All these results together show that, at least under the tested conditions, RpoS is the central regulator in the
hlyE
regulatory network, integrating multiple environmental signals and global regulators.
Journal Article
Antimicrobial Activity and Phytochemical Characterization of IBaccharis concava/I Pers., a Native Plant of the Central Chilean Coast
2024
Few sclerophyllous plants from the central coast of Chile have been systematically studied. This work describes the phytochemical composition and antimicrobial properties of Baccharis concava Pers. (sin. B. macraei), a shrub found in the first line and near the Pacific coast. B. concava has been traditionally used by indigenous inhabitants of today’s central Chile for its medicinal properties. Few reports exist regarding the phytochemistry characterization and biological activities of B. concava. A hydroalcoholic extract of B. concava was prepared from leaves and small branches. Qualitative phytochemical characterization indicated the presence of alkaloids, steroids, terpenoids, flavonoids, phenolic, and tannin compounds. The antimicrobial activity of this extract was assessed in a panel of microorganisms including Gram-positive bacteria, Gram-negative bacteria, and pathogenic yeasts. The extract displayed an important antimicrobial effect against Gram-positive bacteria, Candida albicans, and Cryptococcus neoformans but not against Gram-negatives, for which an intact Lipopolysaccharide is apparently the determinant of resistance to B. concava extracts. The hydroalcoholic extract was then fractionated through a Sephadex LH-20/methanol–ethyl acetate column. Afterward, the fractions were pooled according to a similar pattern visualized by TLC/UV analysis. Fractions obtained by this criterion were assessed for their antimicrobial activity against Staphylococcus aureus. The fraction presenting the most antimicrobial activity was HPLC-ESI-MS/MS, obtaining molecules related to caffeoylquinic acid, dicaffeoylquinic acid, and quercetin, among others. In conclusion, the extracts of B. concava showed strong antimicrobial activity, probably due to the presence of metabolites derived from phenolic acids, such as caffeoylquinic acid, and flavonoids, such as quercetin, which in turn could be responsible for helping with wound healing. In addition, the development of antimicrobial therapies based on the molecules found in B. concava could help to combat infection caused by pathogenic yeasts and Gram-positive bacteria, without affecting the Gram-negative microbiota.
Journal Article