Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Howard T. J. Mount"
Sort by:
The CNS glycoprotein Shadoo has PrPC-like protective properties and displays reduced levels in prion infections
by
Ng, Vivian
,
Fraser, Paul E
,
Watts, Joel C
in
Cellular biology
,
Glycoproteins
,
Molecular biology
2007
The cellular prion protein, PrP
C
, is neuroprotective in a number of settings and in particular prevents cerebellar degeneration mediated by CNS‐expressed Doppel or internally deleted PrP (‘ΔPrP’). This paradigm has facilitated mapping of activity determinants in PrP
C
and implicated a cryptic PrP
C
‐like protein, ‘π’. Shadoo (Sho) is a hypothetical GPI‐anchored protein encoded by the
Sprn
gene, exhibiting homology and domain organization similar to the N‐terminus of PrP. Here we demonstrate
Sprn
expression and Sho protein in the adult CNS. Sho expression overlaps PrP
C
, but is low in cerebellar granular neurons (CGNs) containing PrP
C
and high in PrP
C
‐deficient dendritic processes. In
Prnp
0/0
CGNs, Sho transgenes were PrP
C
‐like in their ability to counteract neurotoxic effects of either Doppel or ΔPrP. Additionally, prion‐infected mice exhibit a dramatic reduction in endogenous Sho protein. Sho is a candidate for π, and since it engenders a PrP
C
‐like neuroprotective activity, compromised neuroprotective activity resulting from reduced levels may exacerbate damage in prion infections. Sho may prove useful in deciphering several unresolved facets of prion biology.
Journal Article
Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone
by
Dhume, Shreya H.
,
Sled, John G.
,
Serghides, Lena
in
cognition
,
HIV antiretrovirals
,
hyperactivity
2024
Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of
ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed
to ART.
Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR.
Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner.
In our model,
ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Journal Article
PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria
by
Lu, Ziyue
,
Serghides, Lena
,
Sled, John G.
in
Agonists (Biochemistry)
,
Animals
,
Antimalarials - pharmacology
2014
Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM.
Journal Article
Brainstem Concentrations of Cholesterol are not Influenced by Genetic Ablation of the Low-Density Lipoprotein Receptor
by
Mount, Howard T. J.
,
Kim, John H.
,
Bazinet, Richard P.
in
Animals
,
Biochemistry
,
Biomedical and Life Sciences
2009
Purpose
The low-density lipoprotein receptor (LDLr) mediates the uptake of LDL particles enriched with cholesterol, into several tissues. In contrast to other tissues, the brain is thought to obtain cholesterol solely by de novo synthesis, yet certain brain regions such as the brainstem are highly enriched with the LDLr. The goal of the present study was to assess the role of the LDLr in maintaining cholesterol concentrations in the brainstem of wildtype and LDLr knockout (LDLr−/−) mice. Cholesterol concentrations were also measured in the cortex, which served as a reference point, due to the lower expression of the LDLr, as compared to the brainstem.
Methods
LDLr−/− and wildtype mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem were isolated for cholesterol analysis. Cholesterol was extracted into chloroform/methanol, derivatized in trimethylsilyl chloride and measured by gas chromatography/mass spectrometry.
Results
Concentrations of cholesterol in the brainstem did not differ statistically between LDLr−/− (18.8 ± 1.6 mg/g wet weight brain) and wildtype (19.1 ± 2.0). Cortical cholesterol concentrations also did not differ statistically between LDLr−/− (11.0 ± 0.4 mg/g wet weight brain) and wildtype (11.1 ± 0.2) mice.
Conclusion
The LDLr is not necessary for maintaining cholesterol concentrations in the cortex or brainstem, suggesting that other mechanisms are sufficient to maintain brain cholesterol concentrations.
Journal Article
Brain-Derived Neurotrophic Factor Rapidly Enhances Phosphorylation of the Postsynaptic N-methyl-D-Aspartate Receptor Subunit 1
1997
Although neurotrophins have traditionally been regarded as neuronal survival factors, recent work has suggested a role for these factors in synaptic plasticity. In particular, brain-derived neurotrophic factor (BDNF) rapidly enhances synaptic transmission in hippocampal neurons through trkB receptor stimulation and postsynaptic phosphorylation mechanisms. Activation of trkB also modulates hippocampal long-term potentiation, in which postsynaptic N-methyl-D-aspartate glutamate receptors play a key role. However, the final common pathway through which BDNF increases postsynaptic responsiveness is unknown. We now report that BDNF, within 5 min of exposure, elicits a dose-dependent increase in phosphorylation of the N-methyl-D-aspartate receptor subunit 1. This acute effect occurred in hippocampal synaptoneurosomes, which contain pre- and postsynaptic elements, and in isolated hippocampal postsynaptic densities. Nerve growth factor, in contrast, caused no enhancement of phosphorylation. These results suggest a potential mechanism for trophin-induced potentiation of synaptic transmission.
Journal Article
Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease
by
Kar, Satyabrata
,
Mount, Howard T.J.
,
Westaway, David
in
Alzheimer Disease - physiopathology
,
Alzheimer's disease
,
Amyloid beta-Peptides - physiology
2004
Alzheimer’s disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer’s disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss of basal forebrain cholinergic neurons that innervate the hippocampus and the neocortex. Aβ accumulation may trigger or contribute to the process of neurodegeneration. However, the mechanisms whereby Aβ induces basal forebrain cholinergic cell loss and cognitive impairment remain obscure. Physiologically relevant concentrations of Aβ-related peptides have acute, negative effects on multiple aspects of acetylcholine (ACh) synthesis and release, without inducing toxicity. These data suggest a neuromodulatory influence of the peptides on central cholinergic functions. Long-term exposure to micromolar Aβ induces cholinergic cell toxicity, possibly via hyperphosphorylation of tau protein. Conversely, activation of selected cholinergic receptors has been shown to alter the processing of the amyloid precursor protein as well as phosphorylation of tau protein. A direct interaction between Aβ and nicotinic ACh receptors has also been demonstrated. This review addresses the role of Aβ-related peptides in regulating the function and survival of central cholinergic neurons and the relevance of these effects to cholinergic deficits in Alzheimer’s disease. Understanding the functional interrelations between Aβ peptides, cholinergic neurons and tau phosphorylation will unravel the biologic events that precede neurodegeneration and may lead to the development of more effective pharmacotherapies for Alzheimer’s disease.
Journal Article
Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model
by
Hawkes, Cheryl A
,
Phinney, Amie L
,
Fraser, Paul E
in
Biomedical and Life Sciences
,
Biomedicine
,
Cancer Research
2006
When given orally to a transgenic mouse model of Alzheimer disease, cyclohexanehexol stereoisomers inhibit aggregation of amyloid β peptide (Aβ) into high-molecular-weight oligomers in the brain and ameliorate several Alzheimer disease–like phenotypes in these mice, including impaired cognition, altered synaptic physiology, cerebral Aβ pathology and accelerated mortality. These therapeutic effects, which occur regardless of whether the compounds are given before or well after the onset of the Alzheimer disease–like phenotype, support the idea that the accumulation of Aβ oligomers has a central role in the pathogenesis of Alzheimer disease.
Journal Article
Alleles at the Nicastrin Locus Modify Presenilin 1-Deficiency Phenotype
by
Rozmahel, Richard
,
Huang, Jean
,
Gu, YongJun
in
Alleles
,
Alzheimer's disease
,
Amyloid beta-Peptides - metabolism
2002
Presenilin 1 (PS1), presenilin 2, and nicastrin form high molecular weight complexes that are necessary for the endoproteolysis of several type 1 transmembrane proteins, including amyloid precursor protein (APP) and the Notch receptor, by apparently similar mechanisms. The cleavage of the Notch receptor at the \"S3-site\" releases a C-terminal cytoplasmic fragment (Notch intracellular domain) that acts as the intracellular transduction molecule for Notch activation. Missense mutations in the presenilins cause familial Alzheimer's disease by augmenting the \"γ-secretase\" cleavage of APP and overproducing one of the proteolytic derivatives, the Aβ peptide. Null mutations in PS1 inhibit both γ-secretase cleavage of APP and S3-site cleavage of the Notch receptor. Mice lacking PS1 function have defective Notch signaling and die perinatally with severe skeletal and brain deformities. We report here that a genetic modifier on mouse distal chromosome 1, coinciding with the locus containing Nicastrin, influences presenilin-mediated Notch S3-site cleavage and the resultant Notch phenotype without affecting presenilin-mediated APP γ-site cleavage. Two missense substitutions of residues conserved among vertebrates have been identified in nicastrin. These results indicate that Notch S3-site cleavage and APP γ-site cleavage are distinct presenilin-dependent processes and support a functional interaction between nicastrin and presenilins in vertebrates. The dissociation of Notch S3-site and APP γ-site cleavage activities will facilitate development of γ-secretase inhibitors for treatment of Alzheimer's disease.
Journal Article
Glial Cell Line-Derived Neurotrophic Factor Promotes the Survival and Morphologic Differentiation of Purkinje Cells
1995
Glial cell line-derived neurotrophic factor (GDNF) promotes survival of midbrain dopaminergic neurons and motoneurons. Expression of GDNF mRNA in cerebellum raises the possibility that cells within this structure might also respond to GDNF. To examine potential trophic activities of GDNF, dissociated cultures of gestational day 18 rat cerebellum were grown for ≤21 days in the presence of factor. GDNF increased Purkinje cell number without affecting the overall number of neurons or glial cells. A maximal response (50% above control) was elicited with GDNF at 1 pg/ml. Effects of GDNF on Purkinje cell differentiation were examined by scoring the morphologic maturation of cells in treated and control cultures. GDNF increased the proportion of Purkinje cells that displayed relatively mature morphologies, characterized by dendritic thickening and the development of spines and filopodial extensions. Morphologic maturation of the overall neuronal population was unaffected. In sum, our data indicate that GDNF is a potent survival and differentiation factor for Purkinje cells, the efferent neurons of cerebellar cortex. Together with its other actions, these findings raise the possibility that GDNF might be a critical trophic factor at multiple loci in neuronal circuits that control motor function.
Journal Article
Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease
by
Mount, Howard T J
,
Fahnestock, Margaret
,
Hajderi, Enid
in
Adrenergic alpha-2 Receptor Antagonists - pharmacology
,
Adrenergic Uptake Inhibitors - pharmacology
,
Adult and adolescent clinical studies
2012
Noradrenergic cell loss is well documented in Alzheimer's disease (AD). We have measured the tissue levels of catecholamines in an amyloid precursor protein-transgenic 'TgCRND8' mouse model of AD and found reductions in noradrenaline (NA) within hippocampus, temporoparietal and frontal cortices, and cerebellum. An age-related increase in cortical NA levels was observed in non-Tg controls, but not in TgCRND8 mice. In contrast, NA levels declined with aging in the TgCRND8 hippocampus. Dopamine levels were unaffected. Reductions in the tissue content of NA were found to coincide with altered expression of brain-derived neurotrophic factor (BDNF) mRNA and to precede the onset of object memory impairment and behavioral despair. To test whether these phenotypes might be associated with diminished NA, we treated mice with dexefaroxan, an antagonist of presynaptic inhibitory α(2)-adrenoceptors on noradrenergic and cholinergic terminals. Mice 12 weeks of age were infused systemically for 28 days with dexefaroxan or rivastigmine, a cholinesterase inhibitor. Both dexefaroxan and rivastigmine improved TgCRND8 behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Our results highlight the importance of noradrenergic depletion in AD-like phenotypes of TgCRND8 mice.
Journal Article