Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Hwang, I.K., Seoul National University, Seoul, Republic of Korea"
Sort by:
Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model
Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.
Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity and its protein levels in the gerbil hippocampus during normal aging
Phosphorylated extracellular signal-regulated kinase (pERK) mediates neuronal synaptic plasticity, long-term potentiation, and learning and memory in the hippocampus. In this study, we examined pERK1/2 immunoreactivity and its protein level in the gerbil hippocampus at various ages. In the postnatal month 1 (PM 1) group, very weak pERK1/2 immunoreactivity was detected in the hippocampus. In the CA1 region, pERK1/2 immunoreactivity was considerably increased in the stratum pyramidale in the PM 6 group. Thereafter, pERK1/2 immunoreactivity was decreased. In the CA2/3 region, pERK1/2 immunoreactivity increased in an age-dependent manner until PM 12. Thereafter, numbers of pERK1/2-immunoreactive neurons were decreased. However, in the mossy fiber zone, pERK1/2 immunostaining became stronger with age. In the dentate gyrus, a few pERK1/2-immunoreactive cells were observed until PM 12. In the PM 18 and 24 groups, numbers of pERK1/2-immunoreactive cells were increased, especially in the polymorphic layer. In Western blot analysis, pERK1/2 level in the gerbil hippocampus was increased with age. These results indicate that total pERK1/2 levels are increased in the hippocampus with age. However pERK1/2 immunoreactivity in subregions of the gerbil hippocampus was changed with different pattern during normal aging.