Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Hwang, Jenn-Kang"
Sort by:
CELLO2GO: A Web Server for Protein subCELlular LOcalization Prediction with Functional Gene Ontology Annotation
CELLO2GO (http://cello.life.nctu.edu.tw/cello2go/) is a publicly available, web-based system for screening various properties of a targeted protein and its subcellular localization. Herein, we describe how this platform is used to obtain a brief or detailed gene ontology (GO)-type categories, including subcellular localization(s), for the queried proteins by combining the CELLO localization-predicting and BLAST homology-searching approaches. Given a query protein sequence, CELLO2GO uses BLAST to search for homologous sequences that are GO annotated in an in-house database derived from the UniProt KnowledgeBase database. At the same time, CELLO attempts predict at least one subcellular localization on the basis of the species in which the protein is found. When homologs for the query sequence have been identified, the number of terms found for each of their GO categories, i.e., cellular compartment, molecular function, and biological process, are summed and presented as pie charts representing possible functional annotations for the queried protein. Although the experimental subcellular localization of a protein may not be known, and thus not annotated, CELLO can confidentially suggest a subcellular localization. CELLO2GO should be a useful tool for research involving complex subcellular systems because it combines CELLO and BLAST into one platform and its output is easily manipulated such that the user-specific questions may be readily addressed.
Membrane protein-regulated networks across human cancers
Alterations in membrane proteins (MPs) and their regulated pathways have been established as cancer hallmarks and extensively targeted in clinical applications. However, the analysis of MP-interacting proteins and downstream pathways across human malignancies remains challenging. Here, we present a systematically integrated method to generate a resource of cancer membrane protein-regulated networks (CaMPNets), containing 63,746 high-confidence protein–protein interactions (PPIs) for 1962 MPs, using expression profiles from 5922 tumors with overall survival outcomes across 15 human cancers. Comprehensive analysis of CaMPNets links MP partner communities and regulated pathways to provide MP-based gene sets for identifying prognostic biomarkers and druggable targets. For example, we identify CHRNA9 with 12 PPIs (e.g., ERBB2) can be a therapeutic target and find its anti-metastasis agent, bupropion, for treatment in nicotine-induced breast cancer. This resource is a study to systematically integrate MP interactions, genomics, and clinical outcomes for helping illuminate cancer-wide atlas and prognostic landscapes in tumor homo/heterogeneity. Membrane proteins have been implicated in cancers, but studying the downstream effects of their perturbation remains challenging. Here, the authors map the membrane protein-regulated network of 15 cancers, a resource for prognostic biomarker development and druggable target identification.
Protein Thermal Stability Enhancement by Designing Salt Bridges: A Combined Computational and Experimental Study
Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel method for the thermal adaptive design of salt bridges through inference of suitable positions and substitutions.
(PS)2-v2: template-based protein structure prediction server
Background Template selection and target-template alignment are critical steps for template-based modeling (TBM) methods. To identify the template for the twilight zone of 15~25% sequence similarity between targets and templates is still difficulty for template-based protein structure prediction. This study presents the (PS) 2 -v2 server, based on our original server with numerous enhancements and modifications, to improve reliability and applicability. Results To detect homologous proteins with remote similarity, the (PS) 2 -v2 server utilizes the S2A2 matrix, which is a 60 × 60 substitution matrix using the secondary structure propensities of 20 amino acids, and the position-specific sequence profile (PSSM) generated by PSI-BLAST. In addition, our server uses multiple templates and multiple models to build and assess models. Our method was evaluated on the Lindahl benchmark for fold recognition and ProSup benchmark for sequence alignment. Evaluation results indicated that our method outperforms sequence-profile approaches, and had comparable performance to that of structure-based methods on these benchmarks. Finally, we tested our method using the 154 TBM targets of the CASP8 (Critical Assessment of Techniques for Protein Structure Prediction) dataset. Experimental results show that (PS) 2 -v2 is ranked 6 th among 72 severs and is faster than the top-rank five serves, which utilize ab initio methods. Conclusion Experimental results demonstrate that (PS) 2 -v2 with the S2A2 matrix is useful for template selections and target-template alignments by blending the amino acid and structural propensities. The multiple-template and multiple-model strategies are able to significantly improve the accuracies for target-template alignments in the twilight zone. We believe that this server is useful in structure prediction and modeling, especially in detecting homologous templates with sequence similarity in the twilight zone.
Site-Specific Structural Constraints on Protein Sequence Evolutionary Divergence: Local Packing Density versus Solvent Exposure
Protein sequences evolve under selection pressures imposed by functional and biophysical requirements, resulting in site-dependent rates of amino acid substitution. Relative solvent accessibility (RSA) and local packing density (LPD) have emerged as the best candidates to quantify structural constraint. Recent research assumes that RSA is the main determinant of sequence divergence. However, it is not yet clear which is the best predictor of substitution rates. To address this issue, we compared RSA and LPD with site-specific rates of evolution for a diverse data set of enzymes. In contrast with recent studies, we found that LPD measures correlate better than RSA with evolutionary rate. Moreover, the independent contribution of RSA is minor. Taking into account that LPD is related to backbone flexibility, we put forward the possibility that the rate of evolution of a site is determined by the ease with which the backbone deforms to accommodate mutations.
Computational Analysis of KRAS Mutations: Implications for Different Effects on the KRAS p.G12D and p.G13D Mutations
The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation. Molecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT). Using MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding. Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated.
Local Packing Density Is the Main Structural Determinant of the Rate of Protein Sequence Evolution at Site Level
Functional and biophysical constraints result in site-dependent patterns of protein sequence variability. It is commonly assumed that the key structural determinant of site-specific rates of evolution is the Relative Solvent Accessibility (RSA). However, a recent study found that amino acid substitution rates correlate better with two Local Packing Density (LPD) measures, the Weighted Contact Number (WCN) and the Contact Number (CN), than with RSA. This work aims at a more thorough assessment. To this end, in addition to substitution rates, we considered four other sequence variability scores, four measures of solvent accessibility (SA), and other CN measures. We compared all properties for each protein of a structurally and functionally diverse representative dataset of monomeric enzymes. We show that the best sequence variability measures take into account phylogenetic tree topology. More importantly, we show that both LPD measures (WCN and CN) correlate better than all of the SA measures, regardless of the sequence variability score used. Moreover, the independent contribution of the best LPD measure is approximately four times larger than that of the best SA measure. This study strongly supports the conclusion that a site’s packing density rather than its solvent accessibility is the main structural determinant of its rate of evolution.
Proportion of Solvent-Exposed Amino Acids in a Protein and Rate of Protein Evolution
Translational selection, including gene expression, protein abundance, and codon usage bias, has been suggested as the single dominant determinant of protein evolutionary rate in yeast. Here, we show that protein structure is also an important determinant. Buried residues, which are responsible for maintaining protein structure or are located on a stable interaction surface between 2 subunits, are usually under stronger evolutionary constraints than solvent-exposed residues. Our partial correlation analysis shows that, when whole proteins are included, the variance of evolutionary rate explained by the proportion of solvent-exposed residues (Pexposed) can reach two-thirds of that explained by translational selection, indicating that Pexposed is the most important determinant of protein evolutionary rate next only to translational selection. Our result suggests that proteins with many residues under selective constraint (e.g., maintaining structure or intermolecular interaction) tend to evolve slowly, supporting the \"fitness (functional) density\" hypothesis. [PUBLICATION ABSTRACT]
Sequence Conservation, Radial Distance and Packing Density in Spherical Viral Capsids
The conservation level of a residue is a useful measure about the importance of that residue in protein structure and function. Much information about sequence conservation comes from aligning homologous sequences. Profiles showing the variation of the conservation level along the sequence are usually interpreted in evolutionary terms and dictated by site similarities of a proper set of homologous sequences. Here, we report that, of the viral icosahedral capsids, the sequence conservation profile can be determined by variations in the distances between residues and the centroid of the capsid - with a direct inverse proportionality between the conservation level and the centroid distance - as well as by the spatial variations in local packing density. Examining both the centroid and the packing density models against a dataset of 51 crystal structures of nonhomologous icosahedral capsids, we found that many global patterns and minor features derived from the viral structures are consistent with those present in the sequence conservation profiles. The quantitative link between the level of conservation and structural features like centroid-distance or packing density allows us to look at residue conservation from a structural viewpoint as well as from an evolutionary viewpoint.
Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins
Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology.