Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Ignatyev, George"
Sort by:
Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks from Different Geographical Locations in Belarus
Worldwide, ticks are important vectors of human and animal pathogens. Besides Lyme Borreliosis, a variety of other bacterial and protozoal tick-borne infections are of medical interest in Europe. In this study, 553 questing and feeding Ixodes ricinus (n = 327) and Dermacentor reticulatus ticks (n = 226) were analysed by PCR for Borrelia, Rickettsia, Anaplasma, Coxiella, Francisella and Babesia species. Overall, the pathogen prevalence in ticks was 30.6% for I. ricinus and 45.6% for D. reticulatus. The majority of infections were caused by members of the spotted-fever group rickettsiae (24.4%), 9.4% of ticks were positive for Borrelia burgdorferi sensu lato, with Borrelia afzelii being the most frequently detected species (40.4%). Pathogens with low prevalence rates in ticks were Anaplasma phagocytophilum (2.2%), Coxiella burnetii (0.9%), Francisella tularensis subspecies (0.7%), Bartonella henselae (0.7%), Babesia microti (0.5%) and Babesia venatorum (0.4%). On a regional level, hotspots of pathogens were identified for A. phagocytophilum (12.5-17.2%), F. tularensis ssp. (5.5%) and C. burnetii (9.1%), suggesting established zoonotic cycles of these pathogens at least at these sites. Our survey revealed a high burden of tick-borne pathogens in questing and feeding I. ricinus and D. reticulatus ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. Identified hotspots of infected ticks should be included in future surveillance studies, especially when F. tularensis ssp. and C. burnetii are involved.
Essential Role of Platelet-Activating Factor Receptor in the Pathogenesis of Dengue Virus Infection
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In $PAFR^{ - / - } $ mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar $(PAFR^{ - / - }) $ or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are diseasemodifying agents in experimental dengue infection.
IFN-γ Production Depends on IL-12 and IL-18 Combined Action and Mediates Host Resistance to Dengue Virus Infection in a Nitric Oxide-Dependent Manner
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ(-/-) mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40(-/-) and IL-18(-/-) infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40(-/-) mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ(-/-) mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2(-/-) mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection.
A Model of DENV-3 Infection That Recapitulates Severe Disease and Highlights the Importance of IFN-γ in Host Resistance to Infection
There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ(-/-) mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2(-/-) mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.
Investigation of mumps vaccine failures in Minsk, Belarus, 2001–2003
The purpose of this study was to investigate mumps vaccine failures (VF) in a highly vaccinated population of Minsk, Belarus, and to investigate a possible role for virus strain-specific immunity. During our 3-year study period, 22 adults were admitted to the Infectious Diseases Hospital in Minsk with a diagnosis of mumps. A genotype H1 mumps virus (MuV) strain was identified in all patients. Of 15 patients from whom the paired sera were collected, 9 were confirmed to have been previously vaccinated. Serological examinations indicated primary VF in seven of these cases and secondary VF in two. Despite almost all vaccinated patients possessing MuV specific IgG, few possessed neutralizing antibody to the vaccine strain and titers were nominal. Importantly, none of the sera were able to neutralize a genotype H MuV strain. Our results demonstrate the importance of assaying for neutralizing antibody and support the assertion that antigenic differences between wild type and vaccine MuV strains may play a role in cases of breakthrough infection in vaccinees.
Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen
Two systems have been examined for delivery of DNA-vaccine encoding a HIV-1 polyepitope CTL-immunogen (TCI). One is intended for i.m. injection and is in the form of an artificial virus like particle containing eukaryotic expression plasmid pcDNA-TCI encapsulated within a spermidine–polyglucin conjugate. The other is intended for mucosal immunization and is based on attenuated Salmonella typhimurium strain 7207, which can deliver pcDNA-TCI directly into professional antigen-presenting cells (APC). After immunization, the artificial VLP and recombinant Salmonella induced an enhanced HIV specific serum antibody, proliferative and CTL responses compared to those induced by naked pcDNA-TCI. The most significant responses were produced when pcDNA-TCI was delivered by Salmonella.
Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens
A synthetic T cell immunogen (TCI) has been designed as a candidate DNA-based vaccine against Human immunodeficiency virus (HIV)-1 using cytotoxic T lymphocytes (CD8 + CTL) and T-helper lymphocytes (CD4 + Th) epitopes retrieved from the Los Alamos HIV Molecular Immunology Database. The protein 392 amino acids in length contains about eighty CTL-epitopes, many of which are overlapping and are totally restricted by ten different HLA class I molecules. To be able to detect CTL responses induced by a DNA vaccine in experimental animals, additional epitopes, restricted by mouse and Macaque rhesus major histocompatibility complex (MHC) class I molecules, were included in the target immunogen. The gene encoding the TCI protein was assembled, cloned into vector plasmids and expressed in a prokaryotic and a eukaryotic system. The presence of HIV-1 protein fragments in the immunogen structure was ascertained by ELISA and immunoblotting using panels of HIV-1-positive sera and monoclonal antibodies to p24. It has been demonstrated that DNA vaccine can induce both specific T cell responses (CTL and blast transformation) and specific antibodies in mice immunized with pcDNA-TCI.
Peptide Bbeta(15-42) preserves endothelial barrier function in shock
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bbeta15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bbeta15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bbeta15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bbeta15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bbeta15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bbeta15-42 is confirmed in Fyn(-/-) mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bbeta15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.
Peptide Bβ15-42 Preserves Endothelial Barrier Function in Shock
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn−/− mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.
Construction of artificial virus-like particles exposing HIV epitopes, and the study of their immunogenic properties
One of the major problems in the development of successful recombinant vaccines against human immunodeficiency virus (HIV) is that of correct identification of a safe and effective vaccine delivery system with which to induce protective immunity using soluble protein antigens. An original method for constructing artificial immunogens in the form of spherical particles with yeast dsRNA in the center and hybrid proteins exposing epitopes of an infectious agent on the surface is reported. The dsRNA and the proteins were linked with spermidine–polyglucin–glutathione conjugates. Particles exposing HIV-1 epitopes were constructed, and their immunogenicity tested.