Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,080 result(s) for "Isabelle, Martin"
Sort by:
Arbuscular Mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together With Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis vinifera
Grapevine ( Vitis vinifera L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants. Indeed, it is well established that mycorrhization improves grapevine nutrition and resistance to stresses, especially water stress and resistance to root pathogens. Thus, it appears essential to understand the effect of mycorrhization on grapevine metabolism and defense responses. In this study, we combined a non-targeted metabolomic approach and a targeted transcriptomic study to analyze changes induced in both the roots and leaves of V. vinifera cv. Gewurztraminer by colonization with Rhizophagus irregularis (Ri). We showed that colonization of grapevine with AMF triggers major reprogramming of primary metabolism in the roots, especially sugar and fatty acid metabolism. On the other hand, mycorrhizal roots had decreased contents of most sugars and sugar acids. A significant increase in several fatty acids (C16:1, linoleic and linolenic acids and the C20 arachidonic and eicosapentaenoic acids) was also detected. However, a downregulation of the JA biosynthesis pathway was evidenced. We also found strong induction of the expression of PR proteins from the proteinase inhibitor (PR6) and subtilase (PR7) families in roots, suggesting that these proteins are involved in the mycorrhiza development but could also confer higher resistance to root pathogens. Metabolic changes induced by mycorrhization were less marked in leaves but involved higher levels of linoleic and linolenic acids and decreased sucrose, quinic, and shikimic acid contents. In addition, Ri colonization resulted in enhanced JA and SA levels in leaves. Overall, this study provides a detailed picture of metabolic changes induced by AMF colonization in a woody, economically important species. Moreover, stimulation of fatty acid biosynthesis and PR protein expression in roots and enhanced defense hormone contents in leaves establish first insight in favor of better resistance of grapevine to various pathogens provided by AMF colonization.
Standardization of complex biologically derived spectrochemical datasets
Spectroscopic techniques such as Fourier-transform infrared (FTIR) spectroscopy are used to study interactions of light with biological materials. This interaction forms the basis of many analytical assays used in disease screening/diagnosis, microbiological studies, and forensic/environmental investigations. Advantages of spectrochemical analysis are its low cost, minimal sample preparation, non-destructive nature and substantially accurate results. However, an urgent need exists for repetition and validation of these methods in large-scale studies and across different research groups, which would bring the method closer to clinical and/or industrial implementation. For this to succeed, it is important to understand and reduce the effect of random spectral alterations caused by inter-individual, inter-instrument and/or inter-laboratory variations, such as variations in air humidity and CO2 levels, and aging of instrument parts. Thus, it is evident that spectral standardization is critical to the widespread adoption of these spectrochemical technologies. By using calibration transfer procedures, in which the spectral response of a secondary instrument is standardized to resemble the spectral response of a primary instrument, different sources of variation can be normalized into a single model using computational-based methods, such as direct standardization (DS) and piecewise direct standardization (PDS); therefore, measurements performed under different conditions can generate the same result, eliminating the need for a full recalibration. Here, we have constructed a protocol for model standardization using different transfer technologies described for FTIR spectrochemical applications. This is a critical step toward the construction of a practical spectrochemical analysis model for daily routine analysis, where uncertain and random variations are present.The aim of this spectral standardization model is to expedite multicenter studies with large numbers of samples. The protocol covers sample preparation, acquisition of FTIR spectra, data preprocessing and model standardization.
Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin
Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy.
Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
The Regulatory Networks That Control Clostridium difficile Toxin Synthesis
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
How the Anaerobic Enteropathogen Clostridioides difficile Tolerates Low O2 Tensions
Clostridioides difficile is a major cause of diarrhea associated with antibiotherapy. After germination of C. difficile spores in the small intestine, vegetative cells are exposed to low oxygen (O2) tensions. While considered strictly anaerobic, C. difficile is able to grow in nonstrict anaerobic conditions (1 to 3% O2) and tolerates brief air exposure indicating that this bacterium harbors an arsenal of proteins involved in O2 detoxification and/or protection. Tolerance of C. difficile to low O2 tensions requires the presence of the alternative sigma factor, σB, involved in the general stress response. Among the genes positively controlled by σB, four encode proteins likely involved in O2 detoxification: two flavodiiron proteins (FdpA and FdpF) and two reverse rubrerythrins (revRbr1 and revRbr2). As previously observed for FdpF, we showed that both purified revRbr1 and revRbr2 harbor NADH-linked O2- and H2O2-reductase activities in vitro, while purified FdpA mainly acts as an O2-reductase. The growth of a fdpA mutant is affected at 0.4% O2, while inactivation of both revRbrs leads to a growth defect above 0.1% O2. O2-reductase activities of these different proteins are additive since the quadruple mutant displays a stronger phenotype when exposed to low O2 tensions compared to the triple mutants. Our results demonstrate a key role for revRbrs, FdpF, and FdpA proteins in the ability of C. difficile to grow in the presence of physiological O2 tensions such as those encountered in the colon.IMPORTANCE Although the gastrointestinal tract is regarded as mainly anoxic, low O2 tension is present in the gut and tends to increase following antibiotic-induced disruption of the host microbiota. Two decreasing O2 gradients are observed, a longitudinal one from the small to the large intestine and a second one from the intestinal epithelium toward the colon lumen. Thus, O2 concentration fluctuations within the gastrointestinal tract are a challenge for anaerobic bacteria such as C. difficile. This enteropathogen has developed efficient strategies to detoxify O2. In this work, we identified reverse rubrerythrins and flavodiiron proteins as key actors for O2 tolerance in C. difficile. These enzymes are responsible for the reduction of O2 protecting C. difficile vegetative cells from associated damages. Original and complex detoxification pathways involving O2-reductases are crucial in the ability of C. difficile to tolerate O2 and survive to O2 concentrations encountered in the gastrointestinal tract.
Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts
External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo , and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.
Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy
BackgroundDevelopment of a nonendoscopic test for Barrett’s esophagus would revolutionize population screening and surveillance for patients with Barrett’s esophagus. Swallowed cell collection devices have recently been developed to obtain cytology brushings from the esophagus: automated detection of neoplasia in such samples would enable large-scale screening and surveillance.MethodsFourier transform infrared (FTIR) spectroscopy was used to develop an automated tool for detection of Barrett’s esophagus and Barrett’s neoplasia in esophageal cell samples. Cytology brushings were collected at endoscopy, cytospun onto slides and FTIR images were measured. An automated cell recognition program was developed to identify individual cells on the slide.ResultsCytology review and contemporaneous histology was used to inform a training dataset containing 141 cells from 17 patients. A classification model was constructed by principal component analysis fed linear discriminant analysis, then tested by leave-one-sample-out cross validation. With application of this training model to whole slide samples, a threshold voting system was used to classify samples according to their constituent cells. Across the entire dataset of 115 FTIR maps from 66 patients, whole samples were classified with sensitivity and specificity respectively as follows: normal squamous cells 79.0% and 81.1%, nondysplastic Barrett’s esophagus cells 31.3% and 100%, and neoplastic Barrett’s esophagus cells 83.3% and 62.7%.ConclusionsAnalysis of esophageal cell samples can be performed with FTIR spectroscopy with reasonable sensitivity for Barrett’s neoplasia, but with poor specificity with the current technique.
Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush
The separation of immiscible liquids has significant implications for magma evolution and the formation of magmatic ore deposits. We combine high-resolution imaging and electron probe microanalysis with the first use of atom probe tomography on tholeiitic basaltic glass from Hawaii, the Snake River Plain, and Iceland, to investigate the onset of unmixing of basaltic liquids into Fe-rich and Si-rich conjugates. We examine the relationships between unmixing and crystal growth, and the evolution of a nanoemulsion in a crystal mush. We identify the previously unrecognised role played by compositional boundary layers in promoting unmixing around growing crystals at melt-crystal interfaces. Our findings have important implications for the formation of immiscible liquid in a crystal mush, the interpretations of compositional zoning in crystals, and the role of liquid immiscibility in controlling magma physical properties. This study seeks to tackle the question of why intermediate magmatic rock compositions are poorly represented on the Earth’s surface. The authors do so by tracking the evolution of the physical behaviour of immiscible Fe-rich liquids within a sample suite from the lava lake on the Kilauea Iki volcano, Hawaii.
Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus–host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.