Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
75
result(s) for
"Ismail, Aziah"
Sort by:
Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis
by
Jeffry, Alfeq Jazree Nashru
,
Najib, Mohamad Ahmad
,
Norhayati, Mohd Noor
in
Antigens
,
Asymptomatic
,
Coronaviruses
2022
The identification of viral RNA using reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the gold standard for identifying an infection caused by SARS-CoV-2. The limitations of RT-qPCR such as requirement of expensive instruments, trained staff and laboratory facilities led to development of rapid antigen tests (RATs). The performance of RATs has been widely evaluated and found to be varied in different settings. The present systematic review aims to evaluate the pooled sensitivity and specificity of the commercially available RATs. This review was registered on PROSPERO (registration number: CRD42021278105). Literature search was performed through PubMed, Embase and Cochrane COVID-19 Study Register to search studies published up to 26 August 2021. The overall pooled sensitivity and specificity of RATs and subgroup analyses were calculated. Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the risk of bias in each study. The overall pooled sensitivity and specificity of RATs were 70% (95% CI: 69–71) and 98% (95% CI: 98–98), respectively. In subgroup analyses, nasal swabs showed the highest sensitivity of 83% (95% CI: 80–86) followed by nasopharyngeal swabs 71% (95% CI: 70–72), throat swabs 69% (95% CI: 63–75) and saliva 68% (95% CI: 59–77). Samples from symptomatic patients showed a higher sensitivity of 82% (95% CI: 82–82) as compared to asymptomatic patients at 68% (95% CI: 65–71), while a cycle threshold (Ct) value ≤25 showed a higher sensitivity of 96% (95% CI: 95–97) as compared to higher Ct value. Although the sensitivity of RATs needs to be enhanced, it may still be a viable option in places where laboratory facilities are lacking for diagnostic purposes in the early phase of disease.
Journal Article
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection
by
Hamzah, Hairul Hisham
,
Najib, Mohamad Ahmad
,
Awang, Mohd Syafiq
in
Antibiotics
,
Antimicrobial agents
,
aptamer
2021
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Journal Article
Persistent low-density infection in areas at risk of malaria reintroduction in Malaysia
2025
Malaysia successfully achieved zero indigenous human malaria cases since 2018. However, challenges persist from Plasmodium knowlesi (zoonotic malaria) and low-density infections, posing reintroduction risks in previously malaria-free areas. Addressing these hidden infections is critical for sustaining Malaysia’s elimination gains. This study investigated the persistence of low-density malaria transmission in high-risk localities declared malaria-free for at least three consecutive years. A community-based cross-sectional survey was conducted from June to October 2020 in 23 high-receptivity localities across Sabah, Perak, Kelantan, and Johor. Blood samples from asymptomatic residents were screened via conventional microscopy and nested PCR (nPCR) targeting the Plasmodium 18S rRNA gene, with positive nPCR products species-determined. Sociodemographic and geospatial data were analyzed for associations with infection status. Of 3,322 asymptomatic individuals, no infections were detected by microscopy, whereas nPCR revealed a low-density malaria prevalence of 1.86% (62/3,322). Infections comprised P. malariae (40.3%), P. vivax (29.0%), P. knowlesi (24.2%), P. falciparum (1.6%), P. cynomolgi (1.6%), and mixed P. vivax/P. knowlesi (3.2%). All PCR-positive cases originated from Sabah and an Orang Asli settlement in Perak. Adults (≥17 years) constituted the majority (~68%), with no significant difference in prevalence by gender or previous malaria history (p > 0.05). Asymptomatic low-density malaria infections persist in purportedly malaria-free communities, remaining undetectable by routine microscopy. These hidden parasite reservoirs pose a risk for malaria reintroduction, especially in receptive areas. Malaria surveillance programs must thus incorporate highly sensitive diagnostic tools to detect low-density infections and safeguard elimination gains. Intensified, targeted interventions in identified “malaria hotspots”, including community engagement and vector control, are crucial to eliminate residual foci and prevent disease resurgence.
Journal Article
Isolation and characterization of bacteriophage against clinical isolates of AmpC beta lactamase–Producing Klebsiella pneumoniae from hospital wastewater
by
Zaidah, Abdul Rahman
,
Aziah, Ismail
,
Abusalah, Manal Abdel Haleem A.
in
Antibiotics
,
Bacteria
,
Bacterial Proteins - metabolism
2025
The increasing incidence of AmpC β-lactamase producing by K. pneumoniae has raised global alarm. Consequently, there is a crucial need for effective methods to inactivate pathogenic bacteria and mitigate the associated risks. Bacteriophage therapy has been demonstrated to be an effective and alternative approach for targeting and inactivating K. pneumoniae that produces AmpC. This study aimed to isolate and characterize the Klebsiella pneumoniae AmpC-specific phages from hospital wastewater.
The hospital wastewater samples were collected from the sewage water effluent of a tertiary hospital at Universiti Sains Malaysia, located on the east coast of Malaysia. These samples underwent serial filtration and centrifugation processes for phage recovery. The phage solutions were undergoing a screening test by spot assay using clinical isolates of Klebsiella pneumoniae AmpC strain as amplification hosts. The isolated AmpC-phages were further studied and characterised to determine the phage's host range, temperature, pH, and chloroform stabilities. High-Resolution Transmission Electron Microscopy (HRTEM) was performed to determine the phage type.
Thirty HWW samples were analyzed using four K. pneumoniae AmpC strains resulting in a total of 120 screening plates. The AmpC-Klebsiella pneumoniae (AmpC-KP) phages were detected in 31.70% (38/120) of the plates. The AmpC-KP phages had lytic diameters ranging from 1-3 mm, and a phage titer ranged from4×103-3.2×107 PFU/ml. The phages had a narrow-host range stable at a temperature range from -20-50˚C. The phages were also stable at pH ranging from 4 to 9 and at different concentrations of chloroform (5%,10%). Based on HRTEM, Siphoviridea was identified.
The AmpC-phages were abundant in hospital wastewater, and HWW was a good source for AmpC-KP phages. The isolated AmpC phages had a high effectivity and specificity for AmpC-KP with a narrow host range and could survive under harsh conditions such as (temperature, pH, and chloroform).
Journal Article
Isolation and characterization of DNA aptamers against the HlyE antigen of Salmonella Typhi
by
Mustaffa, Khairul Mohd Fadzli
,
Ahmad Najib, Mohamad
,
Awang, Mohd Syafiq
in
631/136
,
631/326
,
631/337
2024
Aptamers have emerged as prominent ligands in clinical diagnostics because they provide various advantages over antibodies, such as quicker generation time, reduced manufacturing costs, minimal batch-to-batch variability, greater modifiability, and improved thermal stability. In the present study, we isolated and characterized DNA aptamers that can specifically bind to the hemolysin E (HlyE) antigen of
Salmonella
Typhi for future development of typhoid diagnostic tests. The DNA aptamers against
Salmonella
Typhi HlyE were isolated using systematic evolution of ligands by exponential enrichment (SELEX), and their binding affinity and specificity were assessed utilizing enzyme-linked oligonucleotide assay (ELONA). A total of 11 distinct aptamers were identified, and the binding affinities and species selectivities of the three most probable aptamers were determined. Kd values were obtained in the nanomolar range, with the highest affinity of 83.6 nM determined for AptHlyE97. In addition, AptHlyE11, AptHlyE45 and AptHlyE97 clearly distinguished
S.
Typhi HlyE from other tested bacteria, such as
Salmonella
Paratyphi A,
Salmonella
Paratyphi B,
Shigella flexneri
,
Klebsiella pneumonia
and
Escherichia coli
, therefore displaying desirable specificity. These novel aptamers could be used as diagnostic ligands for the future development of inexpensive and effective point-of-care tests for typhoid surveillance, especially in developing countries of the tropics and subtropics.
Journal Article
Burden and Risk Factors of Melioidosis in Southeast Asia: A Scoping Review
by
Najib, Mohamad Ahmad
,
Harun, Azian
,
Ganapathy, Thanasree
in
Abscesses
,
Asia, Southeastern - epidemiology
,
Bacterial infections
2022
This scoping review aims to provide a comprehensive overview of human melioidosis in Southeast Asia as well as to highlight knowledge gaps in the prevalence and risk factors of this life-threatening disease using available evidence-based data for better diagnosis and treatment. Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was used as the guideline for this review. The literature search was conducted on 23 March 2022 through two electronic databases (PubMed and Scopus) using lists of keywords referring to the Medical Subject Headings (MeSH) thesaurus. A total of 38 articles related to human melioidosis were included from 645 screened articles. These studies were carried out between 1986 and 2019 in six Southeast Asian countries: Thailand, Cambodia, Malaysia, Myanmar, Singapore, and Vietnam. Melioidosis has been reported with a high disease prevalence among high-risk populations. Studies in Thailand (48.0%) and Cambodia (74.4%) revealed disease prevalence in patients with septic arthritis and children with suppurative parotitis, respectively. Other studies in Thailand (63.5%) and Malaysia (54.4% and 65.7%) showed a high seroprevalence of melioidosis among Tsunami survivors and military personnel, respectively. Additionally, this review documented soil and water exposure, diabetes mellitus, chronic renal failure, thalassemia, and children under the age of 15 as the main risk factors for melioidosis. Human melioidosis is currently under-reported in Southeast Asia and its true prevalence is unknown.
Journal Article
Quantum Dot-Based Lateral Flow Immunoassay as Point-of-Care Testing for Infectious Diseases: A Narrative Review of Its Principle and Performance
2022
Infectious diseases are the world’s greatest killers, accounting for millions of deaths worldwide annually, especially in low-income countries. As the risk of emerging infectious diseases is increasing, it is critical to rapidly diagnose infections in the early stages and prevent further transmission. However, current detection strategies are time-consuming and have exhibited low sensitivity. Numerous studies revealed the advantages of point-of-care testing, such as those which are rapid, user-friendly and have high sensitivity and specificity, and can be performed at a patient’s bedside. The Lateral Flow Immunoassay (LFIA) is the most popular diagnostic assay that fulfills the POCT standards. However, conventional AuNPs-LFIAs are moderately sensitive, meaning that rapid detection remains a challenge. Here, we review quantum dot (QDs)-based LFIA for highly sensitive rapid diagnosis of infectious diseases. We briefly describe the principles of LFIA, strategies for applying QDs to enhance sensitivity, and the published performance of the QD-LFIA tested against several infectious diseases.
Journal Article
RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods
2021
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has attracted public attention. The gold standard for diagnosing COVID-19 is reverse transcription–quantitative polymerase chain reaction (RT-qPCR). However, RT-qPCR can only be performed in centralized laboratories due to the requirement for advanced laboratory equipment and qualified workers. In the last decade, clustered regularly interspaced short palindromic repeats (CRISPR) technology has shown considerable promise in the development of rapid, highly sensitive, and specific molecular diagnostic methods that do not require complicated instrumentation. During the current COVID-19 pandemic, there has been growing interest in using CRISPR-based diagnostic techniques to develop rapid and accurate assays for detecting SARS-CoV-2. In this work, we review and summarize reverse-transcription loop-mediated isothermal amplification (RT-LAMP) CRISPR-based diagnostic techniques for detecting SARS-CoV-2.
Journal Article
CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review
by
Ozsoz, Mehmet
,
Khalid, Muhammad Fazli
,
Aziah, Ismail
in
Antimicrobial agents
,
Bacteria
,
Bacterial infections
2022
Recently, CRISPR-Cas system-based assays for bacterial detection have been developed. The aim of this scoping review is to map existing evidence on the utilization of CRISPR-Cas systems in the development of bacterial detection assays. A literature search was conducted using three databases (PubMed, Scopus, and Cochrane Library) and manual searches through the references of identified full texts based on a PROSPERO-registered protocol (CRD42021289140). Studies on bacterial detection using CRISPR-Cas systems that were published before October 2021 were retrieved. The Critical Appraisal Skills Programme (CASP) qualitative checklist was used to assess the risk of bias for all the included studies. Of the 420 studies identified throughout the search, 46 studies that met the inclusion criteria were included in the final analysis. Bacteria from 17 genera were identified utilising CRISPR-Cas systems. Most of the bacteria came from genera such as Staphylococcus, Escherichia, Salmonella, Listeria, Mycobacterium and Streptococcus. Cas12a (64%) is the most often used Cas enzyme in bacterial detection, followed by Cas13a (13%), and Cas9 (11%). To improve the signal of detection, 83% of the research exploited Cas enzymes’ trans-cleavage capabilities to cut tagged reporter probes non-specifically. Most studies used the extraction procedure, whereas only 17% did not. In terms of amplification methods, isothermal reactions were employed in 66% of the studies, followed by PCR (23%). Fluorescence detection (67%) was discovered to be the most commonly used method, while lateral flow biosensors (13%), electrochemical biosensors (11%), and others (9%) were found to be less commonly used. Most of the studies (39) used specific bacterial nucleic acid sequences as a target, while seven used non-nucleic acid targets, including aptamers and antibodies particular to the bacteria under investigation. The turnaround time of the 46 studies was 30 min to 4 h. The limit of detection (LoD) was evaluated in three types of concentration, which include copies per mL, CFU per mL and molarity. Most of the studies used spiked samples (78%) rather than clinical samples (22%) to determine LoD. This review identified the gap in clinical accuracy evaluation of the CRISPR-Cas system in bacterial detection. More research is needed to assess the diagnostic sensitivity and specificity of amplification-free CRISPR-Cas systems in bacterial detection for nucleic acid-based tests.
Journal Article
Current State of COVID-19 Pandemic in Africa: Lessons for Today and the Future
by
Mohamad, Suharni
,
Deris, Zakuan Zainy
,
Harun, Azian
in
Africa, Southern
,
Coronaviruses
,
COVID-19
2021
This study is a cross-sectional, observational analysis of the COVID-19 pandemic in Africa, to understand the progression of the disease across the continent. Published data on COVID-19 from 20 January 2020 to 21 June 2021 were obtained and analyzed. Case fatality ratios, as well as case growth rates and other indices were computed. On 21 June 2021, a total of 178,210,532 confirmed cases and 3,865,978 deaths had been recorded worldwide. While the Americas recorded the highest number of cases, Southern Africa recorded the majority of African cases. Fatality rate since from 20 February 2020 to 21 June 2021 was highest in the Americas (2.63%) and low in the South Eastern Asia region (1.39%), globally increasing from 2.17% at the end of January to 6.36% in May 2020 and decreasing to a range between 2.14% to 2.30% since January 2021. In Africa, the infection rate per 100,000 persons was up to 3090.18, while deaths per 100,000 and case fatality ratio were as high as 119.64 and 5.72%, respectively, among the 20 most-affected countries. The testing rate per million population was highest in Botswana (512,547.08). Fatality appears to be increasing in some regions of Africa. The rate of infection and fatality in Africa could still likely take an upward turn. Strict control measures are required, considering the continent’s weak healthcare systems.
Journal Article