Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Jayachandran, Priyanka"
Sort by:
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Silver nanoparticles act as antitumor agents because of their antiproliferative and apoptosis-inducing properties. The present study aims to develop silver nanoparticle-loaded liposomes for the effective management of cancer. Silver nanoparticle-encapsulated liposomes were prepared using the thin-film hydration method coupled with sonication. The prepared liposomes were characterized by DLS (Dynamic Light Scattering analysis), FESEM (Field Emission Scanning Electron Microscope), and FTIR (Fourier Transform Infrared spectroscopy). The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method and the drug release profile was validated using various mathematical models. A high encapsulation efficiency of silver nanoparticle-loaded liposome was observed (82.25%). A particle size and polydispersity index of 172.1 nm and 0.381, respectively, and the zeta potential of −21.5 mV were recorded. FESEM analysis revealed spherical-shaped nanoparticles in the size range of 80–97 nm. The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method in three different pHs: pH 5.5, pH 6.8, and pH 7.4. A high silver nanoparticle release was observed in pH 5.5 which corresponds to the mature endosomes of tumor cells; 73.32 ± 0.68% nanoparticle was released at 72 h in pH 5.5. Among the various mathematical models analyzed, the Higuchi model was the best-fitted model as there is the highest value of the correlation coefficient which confirms that the drug release follows the diffusion-controlled process. From the Korsmeyer–Peppas model, it was confirmed that the drug release is based on anomalous non-Fickian diffusion. The results indicate that the silver nanoparticle-loaded liposomes can be used as an efficient drug delivery carrier to target cancer cells of various types.
A Review on Annona muricata and Its Anticancer Activity
The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
A Review on IAnnona muricata/I and Its Anticancer Activity
Cancer is becoming more prevalent, raising concerns regarding how well current treatments work. Cancer patients frequently seek alternative treatments to surgery, chemotherapy, and radiation therapy. The use of medicinal plants in both preventative and curative healthcare is widely acknowledged. The compounds of graviola have shown promise as possible cancer-fighting agents and could be used to treat cancer. This review discusses bioactive metabolites present in graviola and their role in affecting the growth and death of different cancer cell types and the molecular mechanism of how it works to downregulate anti-apoptotic genes and the genes involved in pro-cancer metabolic pathways. Also, it reviews how simultaneously increasing the expression of genes promotes apoptosis and causes cancer cells to die so that the active phytochemicals found in graviola could be used as a promising anti-cancer agent. The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development.
Osteophytes in temporomandibular joint, a spectrum of appearance in cone-beam computed tomography: Report of four cases
Osteophyte is one of the hallmark radiographic feature of temporomandibular joint (TMJ) degenerative joint disease that has been used to define the presence of disease. The development of osteophyte is an attempt to stabilize the overload caused by occlusal forces, representing areas of newly-formed cartilage. It can cause various clinical symptoms such as pain, decreased jaw movements, nerve compression, and subsequently compromise joint function. Here, we report four cases of patients with TMJ arthritis showing different appearance of osteophyte using cone-beam computed tomography. This paper also reports two cases of bridging osteophyte at the temporomandibular joint, which has not been reported previously in literature.
Dilated odontoma: A report of two cases from a radiological perspective
Dilated odontoma is the most extreme form of dens invaginatus. The lesion appears as a roughly spherical mass that does not resemble a tooth but in a way appears tooth - like on radiographs due to somewhat similar radiodensity. The lesion is mostly spherical in appearance and hence the term \"dilated.\" Occasionally, we come across cases of simultaneous pathologies. Here, we report two cases of a dilated odontoma one of which is associated with dentigerous cyst and in other case dilated odontoma pushing the maxillary sinus superiorly. Histologically, the mass was composed of dentinal tubules. These morphological and histological features are compatible with those of a dilated odontoma.
Dilated odontoma: A report of two cases from a radiological perspective
Dilated odontoma is the most extreme form of dens invaginatus. The lesion appears as a roughly spherical mass that does not resemble a tooth but in a way appears tooth - like on radiographs due to somewhat similar radiodensity. The lesion is mostly spherical in appearance and hence the term \"dilated.\" Occasionally, we come across cases of simultaneous pathologies. Here, we report two cases of a dilated odontoma one of which is associated with dentigerous cyst and in other case dilated odontoma pushing the maxillary sinus superiorly. Histologically, the mass was composed of dentinal tubules. These morphological and histological features are compatible with those of a dilated odontoma.