Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
12,392 result(s) for "Jenkins, J S"
Sort by:
Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells
Inflammation generally leads to recruitment of monocyte-derived macrophages. What regulates the fate of these cells and to what extent they can assume the identity and function of resident macrophages is unclear. Here, we show that macrophages elicited into the peritoneal cavity during mild inflammation persist long-term but are retained in an immature transitory state of differentiation due to the presence of enduring resident macrophages. By contrast, severe inflammation results in ablation of resident macrophages and a protracted phase wherein the cavity is incapable of sustaining a resident phenotype, yet ultimately elicited cells acquire a mature resident identity. These macrophages also have transcriptionally and functionally divergent features that result from inflammation-driven alterations to the peritoneal cavity micro-environment and, to a lesser extent, effects of origin and time-of-residency. Hence, rather than being predetermined, the fate of inflammation-elicited peritoneal macrophages seems to be regulated by the environment. The peritoneal cavity is a complicated myeloid niche containing a mixed population of resident macrophages and infiltrating cells that are responsive to inflammatory cues. Here the authors trace the fate of these infiltrating macrophages, their conversion to resident cells and how this is altered by the local inflammatory state over time.
Role of Tim4 in the regulation of ABCA1+ adipose tissue macrophages and post-prandial cholesterol levels
Dyslipidemia is a main driver of cardiovascular diseases. The ability of macrophages to scavenge excess lipids implicate them as mediators in this process and understanding the mechanisms underlying macrophage lipid metabolism is key to the development of new treatments. Here, we investigated how adipose tissue macrophages regulate post-prandial cholesterol transport. Single-cell RNA sequencing and protected bone marrow chimeras demonstrated that ingestion of lipids led to specific transcriptional activation of a population of resident macrophages expressing Lyve1, Tim4, and ABCA1. Blocking the phosphatidylserine receptor Tim4 inhibited lysosomal activation and the release of post-prandial high density lipoprotein cholesterol following a high fat meal. Both effects were recapitulated by chloroquine, an inhibitor of lysosomal function. Moreover, clodronate-mediated cell-depletion implicated Tim4 + resident adipose tissue macrophages in this process. Thus, these data indicate that Tim4 is a key regulator of post-prandial cholesterol transport and adipose tissue macrophage function and may represent a novel pathway to treat dyslipidemia. Diverse macrophage subsets are found in adipose tissue where they regulate its physiology. Here, the authors used single-cell RNA sequencing to analyse the effect of post-prandial lipids on adipose tissue macrophages and identify Tim4 as a regulator of ABCA1 + macrophage function and post-prandial cholesterol transport.
Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver
Background With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO 2 , ZnO, Ag, BaSO 4 and CeO 2 ) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. Results Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO 2 . Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2–5.0 µg/mL of ZnO ENMs were found to elicit significant ( p  ≤  0.05 ) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant ( p  ≥  0.05 ) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. Conclusion In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.
The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile
Background Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH 2 or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs. Results In water, the COOH- and NH 2 -QDs were negatively and positively charged, respectively, while in serum-containing medium the NH 2 -QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH 2 - and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH 2 -QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH 2 -QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure. Conclusions Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects.
Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia
Barrett's oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett's oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett's oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett's metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett's metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett's metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett's metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett's metaplasia.
Aromatic adsorption on metals via first-principles density functional theory
We review first-principles calculations relevant to the adsorption of aromatic molecules on metal surfaces. Benzene has been intensively studied on a variety of substrates, providing an opportunity to comment upon trends from one metal to another. Meanwhile, calculations elucidating the adsorption of polycyclic aromatic molecules are more sparse, but nevertheless yield important insights into the role of non-covalent interactions. Heterocyclic and substituted aromatic compounds introduce the complicating possibility of electronic and steric effects, whose relative importance can thus far only be gauged on a case-by-case basis. Finally, the coadsorption and/or reaction of aromatic molecules is discussed, highlighting an area where the predictive power of theory is likely to prove decisive in the future.
Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action
Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound’s subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001–770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the “misleading” in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.
Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling
Intestinal macrophages (mφ) form one of the largest populations of mφ in the body and are vital for the maintenance of gut homeostasis. They have several unique properties and are derived from local differentiation of classical Ly6Chi monocytes, but the factors driving this tissue-specific process are not understood. Here we have used global transcriptomic analysis to identify a unique homeostatic signature of mature colonic mφ that is acquired as they differentiate in the mucosa. By comparing the analogous monocyte differentiation process found in the dermis, we identify TGFβ as an indispensable part of monocyte differentiation in the intestine and show that it enables mφ to adapt precisely to the requirements of their environment. Importantly, TGFβR signaling on mφ has a crucial role in regulating the accumulation of monocytes in the mucosa, via mechanisms that are distinct from those used by IL10.