Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Jeong, H.J., Hallym University, Chuncheon, Republic of Korea"
Sort by:
Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model
Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.
Age-Dependent Pathogenesis of Murine Gammaherpesvirus 68 Infection of the Central Nervous System
Gammaherpesvirus infection of the central nervous system (CNS) has been linked to various neurological diseases, including meningitis, encephalitis, and multiple sclerosis. However, little is known about the interactions between the virus and the CNS in vitro or in vivo. Murine gammaherpesvirus 68 (MHV-68 or γHV-68) is genetically related and biologically similar to human gammaherpesviruses, thereby providing a tractable animal model system in which to study both viral pathogenesis and replication. In the present study, we show the successful infection of cultured neuronal cells, microglia, and astrocytes with MHV-68 to various extents. Upon intracerebroventricular injection of a recombinant virus (MHV-68/LacZ) into 4-5-week-old and 9-10-week-old mice, the 4-5-week-old mice displayed high mortality within 5-7 days, while the majority of the 9-10-week-old mice survived until the end of the experimental period. Until a peak at 3-4 days post-infection, viral DNA replication and gene expression were similar in the brains of both mouse groups, but only the 9-10-week-old mice were able to subdue viral DNA replication and gene expression after 5 days post-infection. Pro-inflammatory cytokine mRNAs of tumor necrosis factor-α, interleukin 1β, and interleukin 6 were highly induced in the brains of the 4-5-week-old mice, suggesting their possible contributions as neurotoxic factors in the age-dependent control of MHV-68 replication of the CNS.