Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
111 result(s) for "Joshi, Devendra"
Sort by:
Capability and Robustness of Novel Hybridized Artificial Intelligence Technique for Sediment Yield Modeling in Godavari River, India
Suspended sediment yield (SSY) prediction plays a crucial role in the planning of water resource management and design. Accurate sediment prediction using conventional models is very difficult due to many complex processes. We developed a fully automatic highly generalized accurate and robust artificial intelligence models for SSY prediction in Godavari River Basin, India. The genetic algorithm (GA), hybridized with an artificial neural network (ANN) (GA-ANN), is a suitable artificial intelligence model for SSY prediction. The GA is used to concurrently optimize all ANN’s parameters. The GA-ANN was developed using daily water discharge, with water level as the input data to estimate the daily SSY at Polavaram, which is the farthest gauging station in the downstream of the Godavari River Basin. The performances of the GA-ANN model were evaluated by comparing with ANN, sediment rating curve (SRC) and multiple linear regression (MLR) models. It is observed that the GA-ANN contains the highest correlation coefficient (0.927) and lowest root mean square error (0.053) along with lowest biased (0.020) values among all the comparative models. The GA-ANN model is the most suitable substitute over traditional models for SSY prediction. The hybrid GA-ANN can be recommended for estimating the SSY due to comparatively superior performance and simplicity of applications.
Optimized Scenario for Estimating Suspended Sediment Yield Using an Artificial Neural Network Coupled with a Genetic Algorithm
Rivers are the agents on earth and act as the main pathways for transporting the continental weathered materials into the sea. The estimation of suspended sediment yield (SSY) is important in the design, planning and management of water resources. The SSY depends on many factors and their interrelationships, which are very nonlinear and complex. The traditional approaches are unable to solve these complex nonlear processes of SSY. Thus, the development of a reliable and accurate model for estimating the SSY is essential. The goal of this research was to develop a single hybrid artificial intelligence model, which is a hybridization of the artificial neural network (ANN) and genetic algorithm (GA) (ANN-GA) for the estimation of SSY in the Mahanadi River (MR), India, by combining data from 11-gauge stations into a single hybrid generalized model and applying it to every gauging station for estimating the SSY. All parameters of the ANN model were optimized automatically and simultaneously using GA to estimate the SSY. The proposed model was developed considering the temporal monthly hydro-climatic data, such as temperature (T), rainfall (RF), water discharge (Q) and SSY and spatial data, including the rock type (RT), catchment area (CA) and relief (R), of all 11 gauging stations in the MR. The performances of the conventional sediment rating curve (SRC), ANN and multiple linear regression (MLR) were compared with the hybrid ANN-GA model. It was noticed that the ANN-GA model provided with greatest coefficient of correlation (0.8710) and lowest root mean square error (0.0088) values among all comparative SRC, ANN and MLR. Thus, the proposed ANN-GA is most appropriate model compared to other examined models for estimating SSY in the MR Basin, India, particularly at the Tikarapara measuring station. If no measures of SSY are available in the MR, then the modelling approach could be used to estimate SSY at ungauged or gauge stations in the MR Basin.
Integrated Parametric Graph Closure and Branch-and-Cut Algorithm for Open Pit Mine Scheduling under Uncertainty
Open pit mine production scheduling is a computationally expensive large-scale mixed-integer linear programming problem. This research develops a computationally efficient algorithm to solve open pit production scheduling problems under uncertain geological parameters. The proposed solution approach for production scheduling is a two-stage process. The stochastic production scheduling problem is iteratively solved in the first stage after relaxing resource constraints using a parametric graph closure algorithm. Finally, the branch-and-cut algorithm is applied to respect the resource constraints, which might be violated during the first stage of the algorithm. Six small-scale production scheduling problems from iron and copper mines were used to validate the proposed stochastic production scheduling model. The results demonstrated that the proposed method could significantly improve the computational time with a reasonable optimality gap (the maximum gap is 4%). In addition, the proposed stochastic method is tested using industrial-scale copper data and compared with its deterministic model. The results show that the net present value for the stochastic model improved by 6% compared to the deterministic model.
An Enhanced Feed-Forward Back Propagation Levenberg–Marquardt Algorithm for Suspended Sediment Yield Modeling
Rivers are dynamic geological agents on the earth which transport the weathered materials of the continent to the sea. Estimation of suspended sediment yield (SSY) is essential for management, planning, and designing in any river basin system. Estimation of SSY is critical due to its complex nonlinear processes, which are not captured by conventional regression methods. Rainfall, temperature, water discharge, SSY, rock type, relief, and catchment area data of 11 gauging stations were utilized to develop robust artificial intelligence (AI), similar to an artificial-neural-network (ANN)-based model for SSY prediction. The developed highly generalized global single ANN model using a large amount of data was applied at individual gauging stations for SSY prediction in the Mahanadi River basin, which is one of India’s largest peninsular rivers. It appeared that the proposed ANN model had the lowest root-mean-squared error (0.0089) and mean absolute error (0.0029) along with the highest coefficient of correlation (0.867) values among all comparative models (sediment rating curve and multiple linear regression). The ANN provided the best accuracy at Tikarapara among all stations. The ANN model was the most suitable substitute over other comparative models for SSY prediction. It was also noticed that the developed ANN model using the combined data of eleven stations performed better at Tikarapara than the other ANN which was developed using data from Tikarapara only. These approaches are suggested for SSY prediction in river basin systems due to their ease of implementation and better performance.
An Optimized Open Pit Mine Application for Limestone Quarry Production Scheduling to Maximize Net Present Value
This study involves a working limestone mine that supplies limestone to the cement factory. The two main goals of this paper are to (a) determine how long an operating mine can continue to provide the cement plant with the quality and quantity of materials it needs, and (b) explore the viability of combining some limestone from a nearby mine with the study mine limestone to meet the cement plant’s quality and quantity goals. These objectives are accomplished by figuring out the maximum net profit for the ultimate pit limit and production sequencing of the mining blocks. The issues were resolved using a branch-and-cut based sequential integer and mixed integer programming problem. The study mine can exclusively feed the cement plant for up to 15 years, according to the data. However, it was also noted that the addition of the limestone from the neighboring mine substantially increased the mine’s life (85 years). The findings also showed that, when compared with the production planning formulation that the company is now using, the proposed approach creates 10% more profit. The suggested method also aids in determining the desired desirable quality of the limestone that will be transported from the nearby mine throughout each production stage.
A Novel Approach to Integrating Uncertainty into a Push Re-Label Network Flow Algorithm for Pit Optimization
The standard optimization of open-pit mine design and production scheduling, which is impacted by a variety of factors, is an essential part of mining activities. The metal uncertainty, which is connected to supply uncertainty, is a crucial component in optimization. To address uncertainties regarding the economic value of mining blocks and the general problem of mine design optimization, a minimum-cut network flow algorithm is employed to give the optimal ultimate pit limits and pushback designs under uncertainty. A structure that is computationally effective and can manage the joint presentation and treatment of the economic values of mining blocks under various circumstances is created by the push re-label minimum-cut technique. In this study, the algorithm is put to the test using a copper deposit and shows similarities to other stochastic optimizers for mine planning that have already been created. Higher possibilities of reaching predicted production targets are created by the algorithm’s earlier selection of more certain blocks with blocks of high value. Results show that, in comparison to a conventional approach using the same algorithm, the cumulative metal output is larger when the uncertainty in the metal content is taken into consideration. There is also an additional 10% gain in net present value.
Suspended Sediment Yield Forecasting with Single and Multi-Objective Optimization Using Hybrid Artificial Intelligence Models
Rivers play a major role within ecosystems and society, including for domestic, industrial, and agricultural uses, and in power generation. Forecasting of suspended sediment yield (SSY) is critical for design, management, planning, and disaster prevention in river basin systems. It is difficult to forecast the SSY using conventional methods because these approaches cannot handle complicated non-stationarity and non-linearity. Artificial intelligence techniques have gained popularity in water resources due to handling complex problems of SSY. In this study, a fully automated generalized single hybrid intelligent artificial neural network (ANN)-based genetic algorithm (GA) forecasting model was developed using water discharge, temperature, rainfall, SSY, rock type, relief, and catchment area data of eleven gauging stations for forecasting the SSY. It is applied at individual gauging stations for SSY forecasting in the Mahanadi River which is one of India’s largest peninsular rivers. All parameters of the ANN are optimized automatically and simultaneously using the GA. The multi-objective algorithm was applied to optimize the two conflicting objective functions (error variance and bias). The mean square error objective function was considered for the single-objective optimization model. Single and multi-objective GA-based ANN, autoregressive and multivariate autoregressive models were compared to each other. It was found that the single-objective GA-based ANN model provided the best accuracy among all comparative models, and it is the most suitable substitute for forecasting SSY. If the measurement of SSY is unavailable, then single-objective GA-based ANN modeling approaches can be recommended for forecasting SSY due to comparatively superior performance and simplicity of implementation.
An Evolutionary Technique for Building Neural Network Models for Predicting Metal Prices
In this research, a neural network (NN) model for metal price forecasting based on an evolutionary approach is proposed. Both the neural network model’s network parameters and network architecture are selected automatically. The time series metal price data set is used to construct a novel fitness function that takes into account both error minimizations and the reproduction of the auto-correlation function. Calculating the average entropy values allowed the selection of the input parameter count for the neural network model. Gold price forecasting was performed using the proposed methodology. The optimal hidden node number, learning rate, and momentum are 9, 0.026, and 0.76, respectively, according to the evolutionary-based NN model. The proposed strategy is shown to reduce estimation error while also reproducing the auto-correlation function of the time series data set by the validation results with gold price data. The performance of the proposed method is better than other current methods, according to a comparison study.
A Novel Large-Scale Stochastic Pushback Design Merged with a Minimum Cut Algorithm for Open Pit Mine Production Scheduling
Traditional optimization of open pit mine design is a crucial component of mining endeavors and is influenced by many variables. The critical factor in optimization is the geological uncertainty, which relates to the ore grade. To deal with uncertainties related to the block economic values of mining blocks and the general problem of mine design optimization, under unknown conditions, the best ultimate pit limits and pushback designs are produced by a minimum cut algorithm. The push–relabel minimal cut algorithm provides a framework for computationally efficient representation and processing of the economic values of mining blocks under multiple scenarios. A sequential Gaussian simulation-based smoothing spline technique was created. To produce pushbacks, an efficient parameterized minimum cut algorithm is suggested. An analysis of Indian iron ore mining was performed. The developed mine scheduling algorithm was compared with the conventional algorithm, and the results show that when uncertainty is considered, the cumulative metal production is higher and there is an additional increase of about 5% in net present value. The results of this work help the mining industry to plan mines in such a way that can generate maximum profit from the deposits.