Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
27
result(s) for
"Kebiri, Hamza"
Sort by:
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
by
Bach Cuadra, Meritxell
,
Kebiri, Hamza
,
de Dumast, Priscille
in
639/166/985
,
692/308/3187
,
Algorithms
2021
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms.
Measurement(s)
regional part of brain • T2 (Observed)-Weighted Imaging
Technology Type(s)
Image Segmentation
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14039327
Journal Article
Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
2021
In retinoblastoma, accurate segmentation of ocular structure and tumor tissue is important when working towards personalized treatment. This retrospective study serves to evaluate the performance of multi-view convolutional neural networks (MV-CNNs) for automated eye and tumor segmentation on MRI in retinoblastoma patients. Forty retinoblastoma and 20 healthy-eyes from 30 patients were included in a train/test (N = 29 retinoblastoma-, 17 healthy-eyes) and independent validation (N = 11 retinoblastoma-, 3 healthy-eyes) set. Imaging was done using 3.0 T Fast Imaging Employing Steady-state Acquisition (FIESTA), T2-weighted and contrast-enhanced T1-weighted sequences. Sclera, vitreous humour, lens, retinal detachment and tumor were manually delineated on FIESTA images to serve as a reference standard. Volumetric and spatial performance were assessed by calculating intra-class correlation (ICC) and dice similarity coefficient (DSC). Additionally, the effects of multi-scale, sequences and data augmentation were explored. Optimal performance was obtained by using a three-level pyramid MV-CNN with FIESTA, T2 and T1c sequences and data augmentation. Eye and tumor volumetric ICC were 0.997 and 0.996, respectively. Median [Interquartile range] DSC for eye, sclera, vitreous, lens, retinal detachment and tumor were 0.965 [0.950–0.975], 0.847 [0.782–0.893], 0.975 [0.930–0.986], 0.909 [0.847–0.951], 0.828 [0.458–0.962] and 0.914 [0.852–0.958], respectively. MV-CNN can be used to obtain accurate ocular structure and tumor segmentations in retinoblastoma.
Journal Article
A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN)
by
Bach Cuadra, Meritxell
,
Koob, Mériam
,
Stuber, Matthias
in
692/308/3187
,
692/700/1421/1628
,
692/700/1421/65
2022
Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled environment with a known ground truth. In this work, we present FaBiAN, an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2-weighted fast spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness and optimize the accuracy of an algorithm for super-resolution fetal brain magnetic resonance imaging from simulated motion-corrupted 2D low-resolution series compared to a synthetic high-resolution reference volume. We also show that the images generated can complement clinical datasets to support data-intensive deep learning methods for fetal brain tissue segmentation.
Journal Article
Deep Learning for fODF Estimation in Infant Brains: Model Comparison, Ground‐Truth Impact, and Domain Shift Mitigation
by
Bach Cuadra, Meritxell
,
Kebiri, Hamza
,
Chen, Yufei
in
Brain - diagnostic imaging
,
Brain - growth & development
,
Connectome - methods
2025
The accurate estimation of fiber orientation distribution functions (fODFs) in diffusion magnetic resonance imaging (MRI) is crucial for understanding early brain development and its potential disruptions. Although supervised deep learning (DL) models have shown promise in fODF estimation from neonatal diffusion MRI (dMRI) data, the out‐of‐domain (OOD) performance of these models remains largely unexplored, especially under diverse domain shift scenarios. This study evaluated the robustness of three state‐of‐the‐art DL architectures: multilayer perceptron (MLP), transformer, and U‐Net/convolutional neural network (CNN) on fODF predictions derived from dMRI data. Using 488 subjects from the developing Human Connectome Project (dHCP) and the Baby Connectome Project (BCP) datasets, we reconstructed reference fODFs from the full dMRI series using single‐shell three‐tissue constrained spherical deconvolution (SS3T‐CSD) and multi‐shell multi‐tissue CSD (MSMT‐CSD) to generate reference fODF reconstructions for model training, and systematically assessed the impact of age, scanner/protocol differences, and input dimensionality on model performance. Our findings reveal that U‐Net consistently outperformed other models when fewer diffusion gradient directions were used, particularly with the SS3T‐CSD‐derived ground truth, which showed superior performance in capturing crossing fibers. However, as the number of input diffusion gradient directions increased, MLP and the transformer‐based model exhibited steady gains in accuracy. Nevertheless, performance nearly plateaued from 28 to 45 input directions in all models. Age‐related domain shifts showed asymmetric patterns, being less pronounced in late developmental stages (late neonates, and babies), with SS3T‐CSD demonstrating greater robustness to variability compared to MSMT‐CSD. To address inter‐site domain shifts, we implemented two adaptation strategies: the Method of Moments (MoM) and fine‐tuning. Both strategies achieved significant improvements (p<0.05 $$ p<0.05 $$ ) in over 95% of tested configurations, with fine‐tuning consistently yielding superior results and U‐Net benefiting the most from increased target subjects. This study represents the first systematic evaluation of OOD settings in DL applications to fODF estimation, providing critical insights into model robustness and adaptation strategies for diverse clinical and research applications. We quantify domain‐shift impacts of three state‐of‐the‐art deep learning models for fiber orientation estimation in dMRI of neonatal and baby brains, across age, scanner, input variations, target output ground truths, and demonstrate how fine‐tuning and data harmonization strategies improve model robustness for clinical and research applications.
Journal Article
Cross-Age and Cross-Site Domain Shift Impacts on Deep Learning-Based White Matter Fiber Estimation in Newborn and Baby Brains
by
Thiran, Jean-Philippe
,
Karimi, Davood
,
Lin, Rizhong
in
Babies
,
Deep learning
,
Distribution functions
2024
Deep learning models have shown great promise in estimating tissue microstructure from limited diffusion magnetic resonance imaging data. However, these models face domain shift challenges when test and train data are from different scanners and protocols, or when the models are applied to data with inherent variations such as the developing brains of infants and children scanned at various ages. Several techniques have been proposed to address some of these challenges, such as data harmonization or domain adaptation in the adult brain. However, those techniques remain unexplored for the estimation of fiber orientation distribution functions in the rapidly developing brains of infants. In this work, we extensively investigate the age effect and domain shift within and across two different cohorts of 201 newborns and 165 babies using the Method of Moments and fine-tuning strategies. Our results show that reduced variations in the microstructural development of babies in comparison to newborns directly impact the deep learning models' cross-age performance. We also demonstrate that a small number of target domain samples can significantly mitigate domain shift problems.
Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data
2024
Segmentation of fetal brain tissue from magnetic resonance imaging (MRI) plays a crucial role in the study of in utero neurodevelopment. However, automated tools face substantial domain shift challenges as they must be robust to highly heterogeneous clinical data, often limited in numbers and lacking annotations. Indeed, high variability of the fetal brain morphology, MRI acquisition parameters, and superresolution reconstruction (SR) algorithms adversely affect the model's performance when evaluated out-of-domain. In this work, we introduce FetalSynthSeg, a domain randomization method to segment fetal brain MRI, inspired by SynthSeg. Our results show that models trained solely on synthetic data outperform models trained on real data in out-ofdomain settings, validated on a 120-subject cross-domain dataset. Furthermore, we extend our evaluation to 40 subjects acquired using lowfield (0.55T) MRI and reconstructed with novel SR models, showcasing robustness across different magnetic field strengths and SR algorithms. Leveraging a generative synthetic approach, we tackle the domain shift problem in fetal brain MRI and offer compelling prospects for applications in fields with limited and highly heterogeneous data.
Spatio-temporal motion correction and iterative reconstruction of in-utero fetal fMRI
by
Prayer, Daniela
,
Langs, Georg
,
Karl-Heinz Nenning
in
Fetuses
,
Image reconstruction
,
Imaging techniques
2022
Resting-state functional Magnetic Resonance Imaging (fMRI) is a powerful imaging technique for studying functional development of the brain in utero. However, unpredictable and excessive movement of fetuses have limited its clinical applicability. Previous studies have focused primarily on the accurate estimation of the motion parameters employing a single step 3D interpolation at each individual time frame to recover a motion-free 4D fMRI image. Using only information from a 3D spatial neighborhood neglects the temporal structure of fMRI and useful information from neighboring timepoints. Here, we propose a novel technique based on four dimensional iterative reconstruction of the motion scattered fMRI slices. Quantitative evaluation of the proposed method on a cohort of real clinical fetal fMRI data indicates improvement of reconstruction quality compared to the conventional 3D interpolation approaches.
Functional organization of the neonatal thalamus across development depicted by functional MRI
by
Van De Ville, Dimitri
,
Delavari, Farnaz
,
Jorge, Joao
in
Brain architecture
,
Cognition
,
Cortex (frontal)
2025
The thalamus is a central component of the brain that is involved in a variety of functions, from sensory processing to high-order cognition. Its structure and function in the first weeks of extrauterine life, including its connections to different cortical and subcortical areas, have not yet been widely explored. Here, we used resting state functional magnetic resonance imaging data of 730 newborns from the developing Human Connectome Project to study the functional organization of the thalamus from 37 to 44 post-conceptual weeks. We introduce KNIT: K-means for Nuclei in Infant Thalamus. The framework employs a highly granular vector space of 40 features, each corresponding to functional connectivity to a brain region, using k-means clustering and uncertainty quantification through bootstrapping to delineate thalamic units. Although the different clusters showed common patterns of increased connectivity to the superior temporal gyrus, the parietal, and the frontal cortex, implying an expected decrease in specialization at that age, they also show some specificity. That is, a pulvinar unit was identified, similar to the adult thalamus. Ventrolateral motor and medial salience units were also highlighted. The latter appeared around 41 weeks of age, while the former showed at least from 37 weeks, but had a decrease in volume through age, replaced mostly by a dominant dorsal thalamic unit. We also observed an increase in clustering robustness and in hemispheric bilateral symmetry with age, suggesting more specialized functional units. We also found a burst in global thalamic connectivity around 41 weeks. Finally, we demonstrate the benefits of this method in terms of granularity compared to the more conventional winner-takes-all approach.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://www.developingconnectome.org/data-release/third-data-release/
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
2021
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open databases of segmented fetal brains. Here we introduce a publicly available database of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the database for the development of automatic algorithms.
Fetal Brain Tissue Annotation and Segmentation Challenge Results
2022
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.