Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
111 result(s) for "Kilpatrick, Charles D."
Sort by:
A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst
Observationally, kilonovae are astrophysical transients powered by the radioactive decay of nuclei heavier than iron, thought to be synthesized in the merger of two compact objects 1 – 4 . Over the first few days, the kilonova evolution is dominated by a large number of radioactive isotopes contributing to the heating rate 2 , 5 . On timescales of weeks to months, its behaviour is predicted to differ depending on the ejecta composition and the merger remnant 6 – 8 . Previous work has shown that the kilonova associated with gamma-ray burst 230307A is similar to kilonova AT2017gfo (ref. 9 ), and mid-infrared spectra revealed an emission line at 2.15 micrometres that was attributed to tellurium. Here we report a multi-wavelength analysis, including publicly available James Webb Space Telescope data 9 and our own Hubble Space Telescope data, for the same gamma-ray burst. We model its evolution up to two months after the burst and show that, at these late times, the recession of the photospheric radius and the rapidly decaying bolometric luminosity ( L bol  ∝  t −2.7±0.4 , where t is time) support the recombination of lanthanide-rich ejecta as they cool. A modelling analysis shows that an unusually long gamma-ray burst gave rise to a lanthanide-rich kilonova following the merger of a neutron star–neutron star or of a neutron star–black hole.
A pulsar-like polarization angle swing from a nearby fast radio burst
Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. Although their origins and emission mechanisms are unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Miky Way Galaxy 1 , with properties suggesting neutron star origins 2 , 3 . However, unlike pulsars, FRBs typically show minimal variability in their linear polarization position angle (PA) curves 4 . Even when marked PA evolution is present, their curves deviate significantly from the canonical shape predicted by the rotating vector model (RVM) of pulsars 5 . Here we report on FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project (CHIME/FRB) and localized to a nearby host galaxy (about 65 Mpc), MCG+14-02-011. This FRB shows a notable approximately 130° PA rotation over its about 2.5 ms burst duration, resembling the characteristic S-shaped evolution seen in many pulsars and some radio magnetars. The observed PA evolution supports magnetospheric origins 6 , 7 – 8 over models involving distant shocks 9 , 10 – 11 , echoing similar conclusions drawn from tempo-polarimetric studies of some repeating FRBs 12 , 13 . The PA evolution is well described by the RVM and, although we cannot determine the inclination and magnetic obliquity because of the unknown period or duty cycle of the source, we exclude very short-period pulsars (for example, recycled millisecond pulsars) as the progenitor. FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project, shows a pronounced change in polarization during the burst, providing important clues into the nature of the source.
A tidal disruption event coincident with a high-energy neutrino
Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
A kilonova following a long-duration gamma-ray burst at 350 Mpc
Gamma-ray bursts (GRBs) are divided into two populations 1 , 2 ; long GRBs that derive from the core collapse of massive stars (for example, ref.  3 ) and short GRBs that form in the merger of two compact objects 4 , 5 . Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers 6 – 8 . Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture ( r -process) nucleosynthesis, observed in the form of so-called kilonovae 9 – 14 . Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref.  4 ). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy. A possible kilonova associated with a nearby, long-duration gamma-ray burst suggests that gamma-ray bursts with long and complex light curves can be spawned from the merger of two compact objects, contrary to the established gamma-ray burst paradigm.
Publisher Correction
In the version of this article initially published, there was in an error in the third-to-last sentence of the abstract, now reading, in part, “we calculate a rate of 0.02–0.01 +0.04 Gpc–3 yr–1”, where Gpc was spelled out as gigapascals, not gigaparsecs. Also, the scale label (2″) was missing in the lower-left corner of Fig. 1b. The errors have been corrected in the HTML and PDF versions of the article.
The Environments of Fast Radio Bursts Viewed Using Adaptive Optics
We present GeMS/GSAOI observations of five fast radio burst (FRB) host galaxies with sub-arcsecond localizations. We examine and quantify their spatial distributions and locations with respect to their host galaxy light distributions, finding a median host-normalized offset of 2.09 r_e and in fainter regions of the host. When combined with the FRB sample from Mannings et al. (2021), we find that FRBs are statistically distinct from Ca-rich transients in terms of light and from SGRBs and LGRBs in terms of host-normalized offset. We further find that most FRBs are in regions of elevated local stellar mass surface densities in comparison to the mean global values of their hosts. This, in combination with the combined FRB sample trace the distribution of stellar mass, points towards a possible similarity of the environments of CC-SNe and FRBs. We also find that 4/5 FRB hosts exhibit distinct spiral arm features, and the bursts originating from such hosts tend to appear on or close to the spiral structure of their hosts, with a median distance of 0.53 kpc. With many well-localized FRB detections looming on the horizon, we will be able to better characterize the properties of FRB environments relative to their host galaxies and other transient classes.
The Dusty Progenitor Star of the Type II Supernova 2017eaw
We present pre-explosion photometry of the likely progenitor star of the Type II supernova (SN II) 2017eaw in NGC 6946. We use a Hubble Space Telescope (HST) image of SN 2017eaw to perform relative astrometry with HST and Spitzer Space Telescope (Spitzer) imaging, finding a single point source consistent with its position. We detect the progenitor star in \\(>\\)40 epochs of HST and Spitzer imaging covering 12.9 years to 43 days before discovery. While the progenitor luminosity was roughly constant for most of this period, there was a \\(\\sim\\)20% increase in its \\(4.5~\\mu\\)m luminosity over the final 3 years before explosion. We interpret the bright mid-infrared emission as a signature of circumstellar dust around the progenitor system. Using the pre-explosion photometry and assuming some circumstellar dust, we find the progenitor is most likely a red supergiant with \\(\\log(L/L_{\\odot}) = 4.9\\) and \\(T = 3350\\) K, obscured by a \\(>2\\times10^{-5}~M_{\\odot}\\) dust shell with \\(R = 4000~R_{\\odot}\\) and \\(T = 960\\) K. Comparing to single-star evolutionary tracks, we find that the progenitor star had an initial mass of \\(13~M_{\\odot}\\) and a mass-loss rate of \\(2\\times10^{-7}~M_{\\odot}~\\text{yr}^{-1}\\), consistent with the population of SN II progenitor stars.
Updated Photometry of the Yellow Supergiant Progenitor and Late-time Observations of the Type IIb Supernova 2016gkg
We present Hubble Space Telescope (HST) observations of the type IIb supernova (SN) 2016gkg at 652, 1698, and 1795 days with the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). Comparing to pre-explosion imaging from 2001 obtained with the Wide Field Planetary Camera 2, we demonstrate that SN 2016gkg is now fainter than its candidate counterpart in the latest WFC3 imaging, implying that the counterpart has disappeared and confirming that it was the SN progenitor star. We show the latest light curve and Keck spectra of SN 2016gkg, which implies that SN 2016gkg is declining more slowly than the expected rate for \\({}^{56}\\)Co decay during its nebular phase. We find that this emission is too luminous to be powered by other radioisotopes, thus we infer that SN 2016gkg is entering a new phase in its evolution where it is powered primarily by interaction with circumstellar matter. Finally, we re-analyze the progenitor star spectral energy distribution and late-time limits in the context of binary evolution models and including emission from a potential companion star and find that all companion stars would be fainter than our limiting magnitudes.
SN 2016iyc: A Type IIb supernova arising from a low-mass progenitor
In this work, photometric and spectroscopic analyses of a very low-luminosity Type IIb supernova (SN) 2016iyc have been performed. SN 2016iyc lies near the faint end among the distribution of similar supernovae (SNe). Given lower ejecta mass (\\(M_{\\rm ej}\\)) and low nickel mass (\\(M_{\\rm Ni}\\)) from the literature, combined with SN 2016iyc lying near the faint end, one-dimensional stellar evolution models of 9 - 14 M\\(_{\\odot}\\) zero-age main-sequence (ZAMS) stars as the possible progenitors of SN 2016iyc have been performed using the publicly available code MESA. Moreover, synthetic explosions of the progenitor models have been simulated using the hydrodynamic evolution codes STELLA and SNEC. The bolometric luminosity light curve and photospheric velocities produced through synthetic explosions of ZAMS stars of mass in the range 12 - 13 M\\(_{\\odot}\\) having a pre-supernova radius \\(R_{\\mathrm{0}} =\\) (240 - 300) R\\(_{\\odot}\\), with \\(M_{\\rm ej} =\\) (1.89 - 1.93) M\\(_{\\odot}\\), explosion energy \\(E_{\\rm exp} = \\) (0.28 - 0.35) \\(\\times 10^{51}\\) erg, and \\(M_{\\rm Ni} < 0.09\\) M\\(_{\\odot}\\), are in good agreement with observations; thus, SN 2016iyc probably exploded from a progenitor near the lower mass limits for SNe IIb. Finally, hydrodynamic simulations of the explosions of SN 2016gkg and SN 2011fu have also been performed to compare intermediate- and high-luminosity examples among well-studied SNe IIb. The results of progenitor modelling and synthetic explosions for SN 2016iyc, SN 2016gkg, and SN 2011fu exhibit a diverse range of mass for the possible progenitors of SNe IIb.
A luminous fast radio burst that probes the Universe at redshift 1
Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion on each burst is imparted by intervening plasma mostly located in the intergalactic medium. We observe a burst, FRB 20220610A, in a morphologically complex host galaxy system at redshift \\(z=1.016 \\pm 0.002\\). The burst redshift and dispersion are consistent with passage through a substantial column of material from the intergalactic medium. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of \\(2 \\times 10^{42}\\) erg, to revise the maximum energy of an FRB.