Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
172 result(s) for "Kim, Byung-Gee"
Sort by:
Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli
Tyrian purple, mainly composed of 6,6'-dibromoindigo (6BrIG), is an ancient dye extracted from sea snails and was recently demonstrated as a biocompatible semiconductor material. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and the difficulty of regiospecific bromination. Here, we introduce an effective 6BrIG production strategy in Escherichia coli using tryptophan 6-halogenase SttH, tryptophanase TnaA and flavin-containing monooxygenase MaFMO. Since tryptophan halogenases are expressed in highly insoluble forms in E. coli , a flavin reductase (Fre) that regenerates FADH 2 for the halogenase reaction was used as an N-terminal soluble tag of SttH. A consecutive two-cell reaction system was designed to overproduce regiospecifically brominated precursors of 6BrIG by spatiotemporal separation of bromination and bromotryptophan degradation. These approaches led to 315.0 mg l −1 6BrIG production from tryptophan and successful synthesis of regiospecifically dihalogenated indigos. Furthermore, it was demonstrated that 6BrIG overproducing cells can be directly used as a bacterial dye. A two-cell setup containing tryptophanase, a flavin-dependent monooxygenase and a regiospecific halogenase (linked to a flavin reductase as a solubility tag) enables the production of 6,6'-dibromoindigo and other indigoid dyes in Escherichia coli .
The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)
Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor , the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development. Bacteria of the genus Streptomyces produce a great variety of natural products, the biosynthesis of which is subject to complex regulatory networks. Here the authors present a high-resolution, genome-wide analysis of the transcriptome and translatome of Streptomyces coelicolor under various growth conditions.
Paintable Decellularized‐ECM Hydrogel for Preventing Cardiac Tissue Damage
The tissue‐specific heart decellularized extracellular matrix (hdECM) demonstrates a variety of therapeutic advantages, including fibrosis reduction and angiogenesis. Consequently, recent research for myocardial infarction (MI) therapy has utilized hdECM with various delivery techniques, such as injection or patch implantation. In this study, a novel approach for hdECM delivery using a wet adhesive paintable hydrogel is proposed. The hdECM‐containing paintable hydrogel (pdHA_t) is simply applied, with no theoretical limit to the size or shape, making it highly beneficial for scale‐up. Additionally, pdHA_t exhibits robust adhesion to the epicardium, with a minimal swelling ratio and sufficient adhesion strength for MI treatment when applied to the rat MI model. Moreover, the adhesiveness of pdHA_t can be easily washed off to prevent undesired adhesion with nearby organs, such as the rib cages and lungs, which can result in stenosis. During the 28 days of in vivo analysis, the pdHA_t not only facilitates functional regeneration by reducing ventricular wall thinning but also promotes neo‐vascularization in the MI region. In conclusion, the pdHA_t presents a promising strategy for MI treatment and cardiac tissue regeneration, offering the potential for improved patient outcomes and enhanced cardiac function post‐MI. The heart decellularized extracellular matrix (hdECM) is one well‐known factor for the myocardial infarction (MI) regeneration. Here, a novel hdECM delivery method using paintable hydrogel with no size or shape limitations on application is shown. It exhibits stable wet cardiac tissue adhesion that is easily regulated with a simple treatment. Moreover, it demonstrates angiogenesis and MI regeneration abilities upon in vivo implantation.
Development of cellulose-based conductive fabrics with electrical conductivity and flexibility
This study aimed to produce cellulose-based conductive fabrics with electrical conductivity and flexibility. Bacterial cellulose (BC) and three chemical cellulose (CC), namely methyl cellulose (MC), hydroxypropyl cellulose (HPMC) and carboxymethyl cellulose (CMC) were in situ polymerized with aniline and the four conductive cellulose fabrics were compared and evaluated. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analysis confirmed that three CC-PANI composites displayed longer and more stable polymerization pattern than BC-PANI because of the different polymerization method: bulk polymerization for BC-PANI and emulsion polymerization for CC-PANI, respectively. The electrical conductivity of BC-PANI and CC-PANI were ranging from 0.962 × 10-2 S/cm to 2.840 × 10-2 S/cm. MC-PANI showed the highest electrical conductivity among the four conductive cellulose fabrics. The flexibility and crease recovery results showed that MC-PANI had the highest flexibility compared to BC-PANI, HPMC-PANI, and CMC-PANI. These results have confirmed that the electrical conductivity and flexibility were influenced by the type of cellulose, and MC-PANI was found to have the best performance in the electrical conductivity and flexibility.
Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae
Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae , but the underlying mechanisms remain unclear. Here, we show that EIIA Glc , a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation. The availability of preferred sugars such as glucose affects EIIA Glc phosphorylation state, which in turn modulates the interaction of EIIA Glc with a c-di-GMP phosphodiesterase (hereafter referred to as PdeS). In a Drosophila model of V. cholerae infection, sugars in the host diet regulate gut colonization in a manner dependent on the PdeS-EIIA Glc interaction. Our results shed light into the mechanisms by which some nutrients regulate biofilm formation and host colonization. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae . Here, Heo et al. show that this process is mediated by a component of the PEP:carbohydrate phosphotransferase system (PTS), which regulates c-di-GMP hydrolysis by interacting with a c-di-GMP phosphodiesterase.
Generation of a recombinant antibody for sensitive detection of Pseudomonas aeruginosa
Pseudomonas aeruginosa ( P. aeruginosa ) is a major pathogen that causes nosocomial infections and often exhibits antibiotic resistance. Therefore, the development of an accurate method for detecting P. aeruginosa is required to control P. aeruginosa -related outbreaks. In this study, we established an enzyme-linked immunosorbent assay method for the sensitive detection of three P. aeruginosa strains, UCBPP PA14, ATCC 27853, and multidrug-resistant ATCC BAA-2108. We produced a recombinant antibody (rAb) against P. aeruginosa V‐antigen (PcrV), which is a needle tip protein of the type III secretion system of P. aeruginosa using mammalian cells with high yield and purity, and confirmed its P. aeruginosa binding efficiency. The rAb was paired with commercial anti- P. aeruginosa Ab for a sandwich ELISA, resulting in an antigen-concentration-dependent response with a limit of detection value of 230 CFU/mL. These results suggest that the rAb produced herein can be used for the sensitive detection of P. aeruginosa with a wide range of applications in clinical diagnosis and point-of-care testing.
Recent advances in the microbial hydroxylation and reduction of soy isoflavones
Soy isoflavones are naturally occurring phytochemicals, which are biotransformed into functional derivatives through oxidative and reductive metabolic pathways of diverse microorganisms. Such representative derivatives, ortho-dihydroxyisoflavones (ODIs) and equols, have attracted great attention for their versatile health benefits since they were found from soybean fermented foods and human intestinal fluids. Recently, scientists in food technology, nutrition and microbiology began to understand their correct biosynthetic pathways and nutraceutical values, and have attempted to produce the valuable bioactive compounds using microbial fermentation and whole-cell/enzyme-based biotransformation. Furthermore, artificial design of microbial catalysts and/or protein engineering of oxidoreductases were also conducted to enhance production efficiency and regioselectivity of products. This minireview summarizes and introduces the past year's studies and recent advances in notable production of ODIs and equols, and provides information on available microbial species and their catalytic performance with perspectives on industrial application.
Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol
Recombinant tyrosinase from Streptomyces avermitilis MA4680, MelC2 (gi:499291317), was heterologously expressed in Escherichia coli BL21 (DE3). The expression level of active MelC2 was increased by the codon-optimized MelC1 caddie protein (KP198295.1). By performing saturation mutagenesis of the Y91 residue of MelC1, it was found that aromatic residues such as Y, F, and W at the 91st position help produce a correctly folded conformation of MelC2. The recombinant MelC2 was utilized as a biocatalyst to convert trans-resveratrol into piceatannol. In order to improve the product yield through suppression of the formation of melanin, a by-product, an increase in the ratio of monooxygenation (k ₁) to dioxygenation (k ₂) of MelC2 is desirable. This was achieved by a combination of protein engineering and regeneration of NADH with glucose dehydrogenase (GDH). Saturation mutagenesis was performed at 15 residues within 8-Å radius from copper ions of MelC2. A total of 2760 mutants were examined (99.7 % probability for NNK codon) and I41Y, a mutant, was screened. The ratio of k ₁ to k ₂ of the mutant increased sevenfold on tyrosine and fivefold on resveratrol, when compared to wild-type MelC2. As a result, the overall product yield from 500 μM resveratrol in 50-mL reaction was 15.4 % (77.4 μM piceatannol), 1.7 times higher than wild type. When I41Y was incorporated with the NADH regeneration system, the total product yield was 58.0 %, an eightfold increase (290.2 μM of piceatannol).
Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid
CYP153A35 from Gordonia alkanivorans was recently characterized as fatty acid ω-hydroxylase. To enhance the catalytic activity of CYP153A35 toward palmitic acid, site-directed saturation mutagenesis was attempted using a semi-rational approach that combined structure-based computational analysis and subsequent saturation mutagenesis. Using colorimetric high-throughput screening (HTS) method based on O-demethylation activity of P450, CYP153A35 D131S and D131F mutants were selected. The best mutant, D131S, having a single mutation on BC-loop, showed 13- and 17-fold improvement in total turnover number (TTN) and catalytic efficiency (kcat/KM) toward palmitic acid compared to wild-type, respectively. However, in whole-cell reaction, D131S mutant showed only 50% improvement in ω-hydroxylated palmitic acid yield compared to the wild type. Docking simulation studies explained that the effect of D131S mutation on the catalytic activity would be mainly caused by the binding pose of fatty acids in the substrate access tunnel of the enzyme. This effect of D131S mutation on the catalytic activity is synergistic with that of the mutations in the active site previously reported.
Light‐Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection
Tyrosinase‐mediated melanin synthesis is an essential biological process that can protect skin from UV radiation and radical species. This work reports on in situ biosynthesis of artificial melanin in native skin using photoactivatable tyrosinase (PaTy). The I41Y mutant of Streptomyces avermitilis tyrosinase (SaTy) shows enzymatic activity comparable to that of wild‐type SaTy. This Y41 is replaced with photocleavable o‐nitrobenzyl tyrosine (ONBY) using the introduction of amber codon and ONBY‐tRNA synthetase/tRNA pairs. The ONBY efficiently blocks the active site and tyrosinase activity is rapidly recovered by the photo‐cleavage of ONBY. The activated PaTy successfully oxidizes L‐tyrosine and tyramine‐conjugated hyaluronic acid (HA_T) to synthesize melanin particles and hydrogel, respectively. To produce artificial melanin in living tissues, PaTy is encapsulated into lipid nanoparticles as an artificial melanosome. Using liposomes containing PaTy (PaTy_Lip), PaTy is transdermally delivered into ex vivo porcine skin and in vivo mouse skin tissues, thus achieving the in situ biosynthesis of artificial melanin for skin tissue protection under UV irradiation. The results of this study demonstrate that this biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin. It should therefore be considered to be a promising strategy for producing protective biological molecules within living systems for tissue protection. Light‐triggered in situ biosynthesis of artificial melanin in native skin is proposed and demonstrated using photoactivatable tyrosinase (PaTy). PaTy is synthesized with site‐specific incorporation of o‐nitrobenzyl tyrosine and then encapsulated into lipid nanoparticles as an artificial melanosome for transdermal delivery. This biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin.