Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
918 result(s) for "Kim, Young-Il"
Sort by:
حول تنظيم النضال المسلح المناهض للإمبريالية اليابانية وخوضه : خطاب ألقاه في اجتماع كوادر الحزب واتحاد الشباب الشيوعي المنعقد في مينغويقوا قضاء يانزي 16 ديسمبر 1931
يتناول كتاب (حول تنظيم النضال المسلح المناهض للإمبريالية اليابانية وخوضه : خطاب ألقاه في اجتماع كوادر الحزب واتحاد الشباب الشيوعي) والذي قام بتأليفه (كيم إيل سونغ) في حوالي (35) صفحة من القطع المتوسط موضوع (النضال المسلح الكوري) مستعرضا المحتويات التالية : حول تنظيم وحدات حرب العصابات الشعبية المناهضة لليابان، حول إنشاء قواعد حرب العصابات، حول إرساء الأساس الجماهيري للنضال المسلح، حول تشكيل جبهة موحدة معادية لليابان للشعبين الكورى والصيني، حول تقوية عمل تنظيم الحزب وعمل اتحاد الشباب الشيوعي.
Family History of Gastric Cancer and Helicobacter pylori Treatment
Among 1676 persons with H. pylori infection who had family members with gastric cancer, the incidence of gastric cancer over a median follow-up of 9.2 years was significantly lower among those who received eradication treatment for H. pylori infection than among those who received placebo.
A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein
Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19. Therapies and vaccines for COVID-19, caused by the SARS-CoV-2 viral pandemic, are urgently needed. Here the authors establish and screen an antibody library from a convalescent COVID-19 patient to isolate a neutralizing antibody with the ability to reduce viral titer and alleviate symptoms in ferret, hamster, and rhesus monkey infection models.
Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets
The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial. Due to the urgent need of a therapeutic treatment for coronavirus (CoV) disease 2019 (COVID-19) patients, a number of FDA-approved/repurposed drugs have been suggested as antiviral candidates at clinics, without sufficient information. Furthermore, there have been extensive debates over antiviral candidates for their effectiveness and safety against severe acute respiratory syndrome CoV 2 (SARS-CoV-2), suggesting that rapid preclinical animal studies are required to identify potential antiviral candidates for human trials. To this end, the antiviral efficacies of lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir for SARS-CoV-2 infection were assessed in the ferret infection model. While the lopinavir-ritonavir-, hydroxychloroquine sulfate-, or emtricitabine-tenofovir-treated group exhibited lower overall clinical scores than the phosphate-buffered saline (PBS)-treated control group, the virus titers in nasal washes, stool specimens, and respiratory tissues were similar between all three antiviral-candidate-treated groups and the PBS-treated control group. Only the emtricitabine-tenofovir-treated group showed lower virus titers in nasal washes at 8 days postinfection (dpi) than the PBS-treated control group. To further explore the effect of immune suppression on viral infection and clinical outcome, ferrets were treated with azathioprine, an immunosuppressive drug. Compared to the PBS-treated control group, azathioprine-immunosuppressed ferrets exhibited a longer period of clinical illness, higher virus titers in nasal turbinate, delayed virus clearance, and significantly lower serum neutralization (SN) antibody titers. Taken together, all antiviral drugs tested marginally reduced the overall clinical scores of infected ferrets but did not significantly affect in vivo virus titers. Despite the potential discrepancy of drug efficacies between animals and humans, these preclinical ferret data should be highly informative to future therapeutic treatment of COVID-19 patients. IMPORTANCE The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial.
Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study
The human gut hosts a diverse community of bacteria referred to as the gut microbiome. We investigated the association between the relative abundance of gastric microbiota and gastric cancer (GC) risk in a Korean population. The study participants included 268 GC patients and 288 controls. DNA was extracted from gastric biopsies, and 16S rRNA gene analysis was performed. Unconditional logistic regression models were used to observe the associations. Of the participants, those who had the highest level (highest tertile) of relative Helicobacter pylori and Propionibacterium acnes abundances showed a significantly higher risk for GC after adjusting for potential confounding variables (odds ratio (OR) = 1.86, 95% confidence interval (CI) = 1.17–2.97, p for trend = 0.017 and OR = 4.77, 95% CI = 2.94–7.74, p for trend <0.001, respectively). Subjects who carried Prevotella copri had a significantly higher risk of GC than noncarriers (OR = 2.54, 95% CI = 1.42–4.55, p for trend = 0.002). There was a lower risk of GC in subjects carrying Lactococcus lactis than in noncarriers (OR = 0.21, 95% CI = 0.10–0.44, p for trend <0.001). H. pylori, P. acnes and P. copri are strong risk factors, whereas L. lactis is a protective factor, for GC development in Koreans. Further microbiome studies are warranted to verify the findings of the current study.
Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets
Few studies have used a longitudinal approach to describe the immune response to SARS-CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment shows distinct changes in cell proportions and characteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages are classified into 10 distinct subpopulations with transcriptome changes among monocyte-derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi. Moreover, trajectory analysis reveals gene expression changes from monocyte-derived infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage subpopulation that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene modules downregulated by immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response dynamics provoked by SARS-CoV-2 infection. A longitudinal analysis of SARS-CoV-2 infection in humans is challenging. Here the authors show a single cell RNA-sequencing analysis of BAL fluid cells from ferrets and characterise the time dependent recruitment of macrophage subsets to the lungs in response to SARS-CoV-2 infection.
Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users
A network composed of unmanned aerial vehicles (UAVs), serving as base stations (UAV-BS network), is emerging as a promising component in next-generation communication systems. In the UAV-BS network, the optimal positioning of a UAV-BS is an essential requirement to establish line-of-sight (LoS) links for ground users. A novel deep Q-network (DQN)-based learning model enabling the optimal deployment of a UAV-BS is proposed. Moreover, without re-learning of the model and the acquisition of the path information of ground users, the proposed model presents the optimal UAV-BS trajectory while ground users move. Specifically, the proposed model optimizes the trajectory of a UAV-BS by maximizing the mean opinion score (MOS) for ground users who move to various paths. Furthermore, the proposed model is highly practical because, instead of the locations of individual mobile users, an average channel power gain is used as an input parameter. The accuracy of the proposed model is validated by comparing the results of the model with those of a mathematical optimization solver.
Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2
The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 10 2 RNA copies close to that of qRT-PCR . Notably, the assay has exhibited a rapid detection span of 30 min combined with the colorimetric visualization. This test can detect specifically viral RNAs of the SARS-CoV-2 with no cross-reactivity to related coronaviruses, such as HCoV-229E, HCoV-NL63, HCoV-OC43, and MERS-CoV as well as human infectious influenza viruses (type B, H1N1pdm, H3N2, H5N1, H5N6, H5N8, and H7N9), and other respiratory disease-causing viruses (RSVA, RSVB, ADV, PIV, MPV, and HRV). Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities.
Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets
While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1–2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2. Here, Kim et al. characterize SARS-CoV-2 infection in juvenile, young, and old aged ferrets to provide a further understanding of differences in COVID-19 severity in humans at different ages. Aged ferrets have higher viral loads, shed virus longer, and mimic the transcriptomic profile of severely infected patients.
Higher Ratio of Serum Alpha-Fetoprotein Could Predict Outcomes in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma and Normal Alanine Aminotransferase
The role of serum alpha-fetoprotein (AFP) levels in the surveillance and diagnosis of hepatocellular carcinoma (HCC) is controversial. The aim of this study was to investigate the value of serially measured serum AFP levels in HCC progression or recurrence after initial treatment. A total of 722 consecutive patients newly diagnosed with HCC and treated at the National Cancer Center, Korea, between January 2004 and December 2009 were enrolled. The AFP ratios between 4-8 weeks post-treatment and those at the time of HCC progression or recurrence were obtained. Multivariate logistic regression analysis was performed to correlate the post-treatment AFP ratios with the presence of HCC progression or recurrence. The etiology of HCC was related to chronic hepatitis B virus (HBV) infection in 562 patients (77.8%), chronic hepatitis C virus (HCV) infection in 74 (10.2%), and non-viral cause in 86 (11.9%). There was a significant decrease in serum AFP levels from the baseline to 4 to 8 weeks after treatment (median AFP, 319.6 ng/mL vs. 49.6 ng/mL; p< 0.001). Multivariate analysis showed that an AFP ratio > 1.0 was an independently associated with HCC progression or recurrence. Among the different causes of HCC analyzed, this association was significant only for HCC related to chronic hepatitis B (p< 0.001) and non-viral causes (p<0.05), and limited only to patients who had normal alanine aminotransferase (ALT) levels. Serial measurements of serum AFP ratios could be helpful in detecting progression or recurrence in treated patients with HBV-HCC and normal ALT.