Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"Kimber, Susan J."
Sort by:
Establishment of porcine and human expanded potential stem cells
We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.
Gao, Nowak-Imialek, Chen et al. generate porcine and human stem cells that possess expanded developmental potency for both embryonic and extra-embryonic cell lineages.
Journal Article
Sox2 Is Essential for Formation of Trophectoderm in the Preimplantation Embryo
by
Ingman, Karen A.
,
Razavi, Janet
,
Edenhofer, Frank
in
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
,
Animals
2010
In preimplantation mammalian development the transcription factor Sox2 (SRY-related HMG-box gene 2) forms a complex with Oct4 and functions in maintenance of self-renewal of the pluripotent inner cell mass (ICM). Previously it was shown that Sox2-/- embryos die soon after implantation. However, maternal Sox2 transcripts may mask an earlier phenotype. We investigated whether Sox2 is involved in controlling cell fate decisions at an earlier stage.
We addressed the question of an earlier role for Sox2 using RNAi, which removes both maternal and embryonic Sox2 mRNA present during the preimplantation period. By depleting both maternal and embryonic Sox2 mRNA at the 2-cell stage and monitoring embryo development in vitro we show that, in the absence of Sox2, embryos arrest at the morula stage and fail to form trophectoderm (TE) or cavitate. Following knock-down of Sox2 via three different short interfering RNA (siRNA) constructs in 2-cell stage mouse embryos, we have shown that the majority of embryos (76%) arrest at the morula stage or slightly earlier and only 18.7-21% form blastocysts compared to 76.2-83% in control groups. In Sox2 siRNA-treated embryos expression of pluripotency associated markers Oct4 and Nanog remained unaffected, whereas TE associated markers Tead4, Yap, Cdx2, Eomes, Fgfr2, as well as Fgf4, were downregulated in the absence of Sox2. Apoptosis was also increased in Sox2 knock-down embryos. Rescue experiments using cell-permeant Sox2 protein resulted in increased blastocyst formation from 18.7% to 62.6% and restoration of Sox2, Oct4, Cdx2 and Yap protein levels in the rescued Sox2-siRNA blastocysts.
We conclude that the first essential function of Sox2 in the preimplantation mouse embryo is to facilitate establishment of the trophectoderm lineage. Our findings provide a novel insight into the first differentiation event within the preimplantation embryo, namely the segregation of the ICM and TE lineages.
Journal Article
Epigenome and transcriptome changes in KMT2D-related Kabuki syndrome Type 1 iPSCs, neuronal progenitors and cortical neurons
by
Cuvertino, Sara
,
Garner, Terence
,
Jackson, Adam
in
Abnormalities, Multiple - genetics
,
Abnormalities, Multiple - pathology
,
Cell Differentiation - genetics
2025
Kabuki syndrome type 1 (KS1) is a neurodevelopmental disorder caused by loss-of-function variants in KMT2D which encodes a H3K4 methyltransferase. The mechanisms underlying neurodevelopmental problems in KS1 are still largely unknown. Here, we track the epigenome and transcriptome across three stages of neuronal differentiation using patient-derived induced pluripotent stem cells (iPSCs) to gain insights into the disease mechanism of KS1. In KS1 iPSCs we detected significantly lower levels of functional KMT2D transcript and KMT2D protein, and lower global H3K4me1, H3K4me2 levels and modest reduction in H3K4me3. We identify loss of thousands of H3K4me1 peaks in iPSCs, neuronal progenitors (NPs) and early cortical neurons (CNs) in KS1. We show that the number of lost peaks increase as differentiation progresses. We also identify hundreds of differentially expressed genes (DEGs) in iPSCs, NPs and CNs in KS1. In contrast with the epigenomic changes, the number of DEGs decrease as differentiation progresses. Our analysis reveals significant enrichment of differentially downregulated genes in areas containing putative enhancer regions with H3K4me1 loss. We also identify a set of distinct transcription factor binding sites in differentially methylated regions and a set of DEGs related to KS1 phenotypes. We find that genes regulated by SUZ12, a subunit of Polycomb Repressive complex 2, are over-represented in KS1 DEGs at early stages of differentiation. In conclusion, we present a disease-relevant human cellular model for KS1 that provides mechanistic insights for the disorder and could be used for high throughput drug screening for KS1.
Journal Article
Directed differentiation of hPSCs through a simplified lateral plate mesoderm protocol for generation of articular cartilage progenitors
by
Woods, Steven
,
Kimber, Susan J.
,
Smith, Christopher A.
in
Analysis
,
Arthritis
,
Biology and Life Sciences
2023
Developmentally, the articular joints are derived from lateral plate (LP) mesoderm. However, no study has produced both LP derived prechondrocytes and preosteoblasts from human pluripotent stem cells (hPSC) through a common progenitor in a chemically defined manner. Differentiation of hPSCs through the authentic route, via an LP-osteochondral progenitor (OCP), may aid understanding of human cartilage development and the generation of effective cell therapies for osteoarthritis. We refined our existing chondrogenic protocol, incorporating knowledge from development and other studies to produce a LP-OCP from which prechondrocyte- and preosteoblast-like cells can be generated. Results show the formation of an OCP, which can be further driven to prechondrocytes and preosteoblasts. Prechondrocytes cultured in pellets produced cartilage like matrix with lacunae and superficial flattened cells expressing lubricin. Additionally, preosteoblasts were able to generate a mineralised structure. This protocol can therefore be used to investigate further cartilage development and in the development of joint cartilage for potential treatments.
Journal Article
A secreted proteomic footprint for stem cell pluripotency
by
Denning, Chris
,
Knight, David
,
Kimber, Susan J.
in
Analysis
,
Automation
,
Biology and Life Sciences
2024
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the waste medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient E6 media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of four E8- against four E6- enriched secretome biomarkers provides a robust, diagnostic metric for the pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to a recovery assay.
Journal Article
Directed differentiation of human embryonic stem cells toward chondrocytes
by
Soncin, Francesca
,
Lowe, Emma T
,
Kimber, Susan J
in
631/532/1360
,
631/61/2320
,
631/61/51/1844
2010
Degeneration of articular cartilage in the joints may be amenable to tissue engineering solutions. Oldershaw
et al
. present an efficient, chemically defined protocol for differentiating human ES cells to chondrocyte-like cells.
We report a chemically defined, efficient, scalable and reproducible protocol for differentiation of human embryonic stem cells (hESCs) toward chondrocytes. HESCs are directed through intermediate developmental stages using substrates of known matrix proteins and chemically defined media supplemented with exogenous growth factors. Gene expression analysis suggests that the hESCs progress through primitive streak or mesendoderm to mesoderm, before differentiating into a chondrocytic culture comprising cell aggregates. At this final stage, 74% (HUES1 cells) and up to 95–97% (HUES7 and HUES8 cells) express the chondrogenic transcription factor SOX9. The cell aggregates also express cell surface CD44 and aggrecan and deposit a sulfated glycosaminoglycan and cartilage-specific collagen II matrix, but show very low or no expression of genes and proteins associated with nontarget cell types. Our protocol should facilitate studies of chondrocyte differentiation and of cell replacement therapies for cartilage repair.
Journal Article
Induced pluripotent stem cell model revealed impaired neurovascular interaction in genetic small vessel disease Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy
2023
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common genetic small vessel disease caused by variants in the
gene. Patients with CADASIL experience recurrent strokes, developing into cognitive defect and vascular dementia. CADASIL is a late-onset vascular condition, but migraine and brain MRI lesions appear in CADASIL patients as early as their teens and twenties, suggesting an abnormal neurovascular interaction at the neurovascular unit (NVU) where microvessels meet the brain parenchyma.
To understand the molecular mechanisms of CADASIL, we established induced pluripotent stem cell (iPSC) models from CADASIL patients and differentiated the iPSCs into the major NVU cell types including brain microvascular endothelial-like cells (BMECs), vascular mural cells (MCs), astrocytes and cortical projection neurons. We then built an
NVU model by co-culturing different neurovascular cell types in Transwells and evaluated the blood brain barrier (BBB) function by measuring transendothelial electrical resistance (TEER).
Results showed that, while the wild-type MCs, astrocytes and neurons could all independently and significantly enhance TEER of the iPSC-BMECs, such capability of MCs from iPSCs of CADASIL patients was significantly impaired. Additionally, the barrier function of the BMECs from CADASIL iPSCs was significantly decreased, accompanied with disorganized tight junctions in iPSC-BMECs, which could not be rescued by the wild-type MCs or sufficiently rescued by the wild-type astrocytes and neurons.
Our findings provide new insight into early disease pathologies on the neurovascular interaction and BBB function at the molecular and cellular levels for CADASIL, which helps inform future therapeutic development.
Journal Article
Modelling the developmental spliceosomal craniofacial disorder Burn-McKeown syndrome using induced pluripotent stem cells
by
Woods, Steven
,
Newman, William G.
,
Rowlands, Charlie F.
in
Alleles
,
Alternative Splicing
,
Apoptosis
2020
The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3' splice site (BPS-3'SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.
Journal Article
Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis
by
Woods, Steven
,
Cuvertino, Sara
,
Biant, Leela
in
631/136/532/1360
,
631/136/532/2064
,
631/136/819
2024
Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.
Journal Article
Cartilage Repair Using Human Embryonic Stem Cell‐Derived Chondroprogenitors
2014
A directed differentiation protocol for human embryonic stem cells (hESCs) that mimics the natural development process toward hyaline cartilage to generate chondrogenic cells with high efficiency and purity was previously reported. This study takes the work forward, optimizing the protocol, extending it to human induced pluripotent stem cells and demonstrating that hESC‐derived chondrogenic cells can regenerate hyaline cartilage using an osteochondral defect model in nude rats. In initial work, we developed a 14‐day culture protocol under potential GMP, chemically defined conditions to generate chondroprogenitors from human embryonic stem cells (hESCs). The present study was undertaken to investigate the cartilage repair capacity of these cells. The chondrogenic protocol was optimized and validated with gene expression profiling. The protocol was also applied successfully to two lines of induced pluripotent stem cells (iPSCs). Chondrogenic cells derived from hESCs were encapsulated in fibrin gel and implanted in osteochondral defects in the patella groove of nude rats, and cartilage repair was evaluated by histomorphology and immunocytochemistry. Genes associated with chondrogenesis were upregulated during the protocol, and pluripotency‐related genes were downregulated. Aggregation of chondrogenic cells was accompanied by high expression of SOX9 and strong staining with Safranin O. Culture with PluriSln1 was lethal for hESCs but was tolerated by hESC chondrogenic cells, and no OCT4‐positive cells were detected in hESC chondrogenic cells. iPSCs were also shown to generate chondroprogenitors in this protocol. Repaired tissue in the defect area implanted with hESC‐derived chondrogenic cells was stained for collagen II with little collagen I, but negligible collagen II was observed in the fibrin‐only controls. Viable human cells were detected in the repair tissue at 12 weeks. The results show that chondrogenic cells derived from hESCs, using a chemically defined culture system, when implanted in focal defects were able to promote cartilage repair. This is a first step in evaluating these cells for clinical application for the treatment of cartilage lesions.
Journal Article