Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
136
result(s) for
"Klein, Rupert"
Sort by:
The Tropical Transition of the October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion Event
2017
The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process.
Journal Article
FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
by
Szmelter, Joanna
,
Wedi, Nils P
,
Klein, Rupert
in
Advection
,
Advective transport
,
Atmospheric models
2019
We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS.We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.
Journal Article
Competitiveness Reconceptualized: Psychometric Development of the Competitiveness Orientation Measure as a Unified Measure of Trait Competitiveness
2014
Despite the utility of examining competitiveness across different contexts, current competitiveness scales lack the ability to unify trait competitiveness into one comprehensive measure. The goal of the present study was to construct one, psychometrically sound, multidimensional scale that would serve to correctly and concisely measure competitiveness tendencies across situational contexts. The present study synthesizes previous research by defining four dimensions of competitiveness: general competitiveness, dominance, competitive affectivity, and personal enhancement. The initial pool of 137 items for the newly developed Competitiveness Orientation Measure was tested in a sample of 886 participants. Item-total correlations, discrimination indices, and factor analysis procedures resulted in the retention of 37 final items with excellent reliability. Theoretically, the Competitiveness Orientation Measure is the first comprehensive, psychometrically valid scale that adequately captures individual differences in competitiveness across four theoretically supported dimensions. Preliminary construct validity was additionally demonstrated, suggesting that competitiveness may serve to differentiate competitors’ success.
Journal Article
A Semi-Implicit Compressible Model for Atmospheric Flows with Seamless Access to Soundproof and Hydrostatic Dynamics
2019
When written in conservation form for mass, momentum, and density-weighted potential temperature, and with Exner pressure in the momentum equation, the pseudoincompressible model and the hydrostatic model only differ from the full compressible equations by some additive terms. This structural proximity is transferred here to a numerical discretization providing seamless access to all three analytical models. The semi-implicit second-order scheme discretizes the rotating compressible equations by evolving full variables, and, optionally, with two auxiliary fields that facilitate the construction of an implicit pressure equation. Time steps are constrained by the advection speed only as a result. Borrowing ideas on forward-in-time differencing, the algorithm reframes the authors’ previously proposed schemes into a sequence of implicit midpoint step, advection step, and implicit trapezoidal step. Compared with existing approaches, results on benchmarks of nonhydrostatic- and hydrostatic-scale dynamics are competitive. The tests include a new planetary-scale gravity wave test that highlights the scheme’s ability to run with large time steps and to access multiple models. The advancement represents a sizeable step toward generalizing the authors’ acoustics-balanced initialization strategy to also cover the hydrostatic case in the framework of an all-scale blended multimodel solver.
Journal Article
Regime of Validity of Soundproof Atmospheric Flow Models
by
Knio, Omar M.
,
Achatz, Ulrich
,
Smolarkiewicz, Piotr K.
in
Acoustic insulation
,
Advection
,
Anelasticity
2010
Ogura and Phillips derived the original anelastic model through systematic formal asymptotics using the flow Mach number as the expansion parameter. To arrive at a reduced model that would simultaneously represent internal gravity waves and the effects of advection on the same time scale, they had to adopt a distinguished limit requiring that the dimensionless stability of the background state be on the order of the Mach number squared. For typical flow Mach numbers of , this amounts to total variations of potential temperature across the troposphere of less than one Kelvin (i.e., to unrealistically weak stratification). Various generalizations of the original anelastic model have been proposed to remedy this issue. Later, Durran proposed the pseudoincompressible model following the same goals, but via a somewhat different route of argumentation. The present paper provides a scale analysis showing that the regime of validity of two of these extended models covers stratification strengths on the order of (hsc/θ)dθ/dz < M2/3, which corresponds to realistic variations of potential temperature θ across the pressure scale height hsc of . Specifically, it is shown that (i) for (hsc/θ)dθ/dz < Mμ with 0 < μ < 2, the atmosphere features three asymptotically distinct time scales, namely, those of advection, internal gravity waves, and sound waves; (ii) within this range of stratifications, the structures and frequencies of the linearized internal wave modes of the compressible, anelastic, and pseudoincompressible models agree up to the order of Mμ; and (iii) if μ < ⅔, the accumulated phase differences of internal waves remain asymptotically small even over the long advective time scale. The argument is completed by observing that the three models agree with respect to the advective nonlinearities and that all other nonlinear terms are of higher order in M.
Journal Article
A Clustering Method to Characterize Intermittent Bursts of Turbulence and Interaction with Submesomotions in the Stable Boundary Layer
2015
Atmospheric boundary layers with stable stratification include a variety of small-scale nonturbulent motions such as waves, microfronts, and other complex structures. When the thermal stratification becomes strong, the presence of such motions could affect the turbulent mixing to a large extent, and common similarity theory that is used to describe weakly stable conditions may become unreliable. The authors apply a statistical clustering methodology based on a bounded variation, finite-element method (FEM-BV) to characterize the interaction between small-scale nonturbulent motions and turbulence. The clustering methodology achieves a multiscale representation of nonstationary turbulence data by approximating them through an optimal sequence of locally stationary multivariate autoregressive factor model (VARX) processes and some slow hidden process switching between them. The clustering method is used to separate periods with different influence of the nonturbulent motions on the vertical velocity fluctuations. The methodology can be used in a later stage to derive a stochastic parameterization for the interactions between nonturbulent and turbulent motions.
Journal Article
Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts
2018
Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525–551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton–Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.
Journal Article
An unstable mode of the stratified atmosphere under the non-traditional Coriolis acceleration
by
Klein, Rupert
,
Chew, Ray
,
Schlutow, Mark
in
Approximation
,
Atmosphere
,
Atmospheric boundary layer
2023
The traditional approximation neglects the cosine components of the Coriolis acceleration, and this approximation has been widely used in the study of geophysical phenomena. However, the justification of the traditional approximation is questionable under a few circumstances. In particular, dynamics with substantial vertical velocities or geophysical phenomena in the tropics have non-negligible cosine Coriolis terms. Such cases warrant investigations with the non-traditional setting, i.e. the full Coriolis acceleration. In this manuscript, we study the effect of the non-traditional setting on an isothermal, hydrostatic and compressible atmosphere assuming a meridionally homogeneous flow. Employing linear stability analysis, we show that, given appropriate boundary conditions, i.e. a bottom boundary condition that allows for a vertical energy flux and non-reflecting boundary at the top, the atmosphere at rest becomes prone to a novel unstable mode. The validity of assuming a meridionally homogeneous flow is investigated via scale analysis. Numerical experiments were conducted, and Rayleigh damping was used as a numerical approximation for the non-reflecting top boundary. Our three main results are as follows: (i) experiments involving the full Coriolis terms exhibit an exponentially growing instability, yet experiments subjected to the traditional approximation remain stable; (ii) the experimental instability growth rate is close to the theoretical value; (iii) a perturbed version of the unstable mode arises even under sub-optimal bottom boundary conditions. Finally, we conclude our study by discussing the limitations, implications and remaining open questions. Specifically, the influence on numerical deep-atmosphere models and possible physical interpretations of the unstable mode are discussed.
Journal Article
A Doubly Blended Model for Multiscale Atmospheric Dynamics
2016
The compressible flow equations for a moist, multicomponent fluid constitute the most comprehensive description of atmospheric dynamics used in meteorological practice. Yet, compressibility effects are often considered weak and acoustic waves outright unimportant in the atmosphere, except possibly for Lamb waves on very large scales. This has led to the development of “soundproof” models, which suppress sound waves entirely and provide good approximations for small-scale to mesoscale motions. Most global flow models are based instead on the hydrostatic primitive equations that only suppress vertically propagating acoustic modes and are applicable to relatively large-scale motions. Generalized models have been proposed that combine the advantages of the hydrostatic primitive and the soundproof equation sets. In this note, the authors reveal close relationships between the compressible, pseudoincompressible (soundproof), hydrostatic primitive, and the Arakawa and Konor unified model equations by introducing a continuous two-parameter (i.e., “doubly blended”) family of models that defaults to either of these limiting cases for particular parameter constellations.
Journal Article
Scaling Approaches to Quasigeostrophic Theory for Moist, Precipitating Air
by
Klein, Rupert
,
Bäumer, Daniel
,
Hittmeir, Sabine
in
Acoustic insulation
,
Applied mathematics
,
Asymptotic properties
2023
Quasigeostrophic (QG) theory is of fundamental importance in the study of large-scale atmospheric flows. In recent years, there has been growing interest in extending the classical QG plus Ekman friction layer model (QG–Ekman) to systematically include additional physical processes known to significantly contribute to real-life weather phenomena. This paper lays the foundation for combining two of these developments, namely, Smith and Stechmann’s family of precipitating quasigeostrophic (PQG) models on the one hand, and the extension of QG–Ekman for dry air by a strongly diabatic layer (DL) of intermediate height (QG–DL–Ekman) on the other hand. To this end, Smith and Stechmann’s PQG equations for soundproof motions are first corroborated within a general asymptotic modeling framework starting from a full compressible flow model. The derivations show that the PQG model family is naturally embedded in the asymptotic hierarchy of scale-dependent atmospheric flow models introduced by one of the present authors. Particular emphasis is then placed on an asymptotic scaling regime for PQG that accounts for a generic Kessler-type bulk microphysics closure and is compatible with QG–DL–Ekman theory. The detailed derivation of a moist QG–DL–Ekman model is deferred to a future publication.
Journal Article