Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Koole, Leo H"
Sort by:
Polymeric Microspheres Designed to Carry Crystalline Drugs at Their Surface or Inside Cavities and Dimples
2023
Injectable polymer microparticles with the ability to carry and release pharmacologically active agents are attracting more and more interest. This study is focused on the chemical synthesis, characterization, and preliminary exploration of the utility of a new type of injectable drug-releasing polymer microparticle. The particles feature a new combination of structural and physico-chemical properties: (i) their geometry deviates from the spherical in the sense that the particles have a cavity; (ii) the particles are porous and can therefore be loaded with crystalline drug formulations; drug crystals can reside at both the particle’s surfaces and inside cavities; (iii) the particles are relatively dense since the polymer network contains covalently bound iodine (approximately 10% by mass); this renders the drug-loaded particles traceable (localizable) by X-ray fluoroscopy. This study presents several examples. First, the particles were loaded with crystalline voriconazole, which is a potent antifungal drug used in ophthalmology to treat fungal keratitis (infection/inflammation of the cornea caused by penetrating fungus). Drug loading as high as 10% by mass (=mass of immobilized drug/(mass of the microparticle + mass of immobilized drug) × 100%) could be achieved. Slow local release of voriconazole from these particles was observed in vitro. These findings hold promise regarding new approaches to treat fungal keratitis. Moreover, this study can help to expand the scope of the transarterial chemoembolization (TACE) technique since it enables the use of higher drug loadings (thus enabling higher local drug concentration or extended therapy duration), as well as application of hydrophobic drugs that cannot be used in combination with existing TACE embolic particles.
Journal Article
Sustained Release of Voriconazole Using 3D-Crosslinked Hydrogel Rings and Rods for Use in Corneal Drug Delivery
by
Rakhmetova, Aiym
,
Sarmout, Malake
,
Koole, Leo H.
in
Antifungal agents
,
Bioavailability
,
Biocompatibility
2023
Corneal disorders and diseases are prevalent in the field of clinical ophthalmology. Fungal keratitis, one of the major factors leading to visual impairment and blindness worldwide, presents significant challenges for traditional topical eye drop treatments. The objective of this study was to create biocompatible 3D-crosslinked hydrogels for drug delivery to the cornea, intending to enhance the bioavailability of ophthalmic drugs. Firstly, a series of flexible and porous hydrogels were synthesized (free-radical polymerization), characterized, and evaluated. The materials were prepared by the free-radical polymerization reaction of 1-vinyl-2-pyrrolidinone (also known as N-vinylpyrrolidone or NVP) and 1,6-hexanediol dimethacrylate (crosslinker) in the presence of polyethylene glycol 1000 (PEG-1000) as the porogen. After the physicochemical characterization of these materials, the chosen hydrogel demonstrated outstanding cytocompatibility in vitro. Subsequently, the selected porous hydrogels could be loaded with voriconazole, an antifungal medication. The procedure was adapted to realize a loading of 175 mg voriconazole per ring, which slightly exceeds the amount of voriconazole that is instilled into the eye via drop therapy (a single eye drop corresponds with approximately 100 mg voriconazole). The voriconazole-loaded rings exhibited a stable zero-order release pattern over the first two hours, which points to a significantly improved bioavailability of the drug. Ex vivo experiments using the established porcine eye model provided confirmation of a 10-fold increase in drug penetration into the cornea (after 2 h of application of the hydrogel ring, 35.8 ± 3.2% of the original dose is retrieved from the cornea, which compares with 3.9 ± 1% of the original dose in the case of eye drop therapy). These innovative hydrogel rods and rings show great potential for improving the bioavailability of ophthalmic drugs, which could potentially lead to reduced hospitalization durations and treatment expenses.
Journal Article
Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection
2015
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
Journal Article
Utilization of Nitrogen-Doped Graphene Quantum Dots to Neutralize ROS and Modulate Intracellular Antioxidant Pathways to Improve Dry Eye Disease Therapy
2024
Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED.
NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs.
, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice.
These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H
O
-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 μg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels.
Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.
Journal Article
Polymethacrylate Sphere-Based Assay for Ultrasensitive miRNA Detection
by
Rito-Palomares, Marco
,
Vázquez-Villegas, Patricia
,
Hosseini, Samira
in
Assaying
,
Biosensors
,
Conjugation
2020
Although microRNAs (miRNAs) have emerged as increasingly important target analytes, their biorecognition remains challenging due to their small size, high sequence homology, and low abundance in clinical samples. Nanospheres and microspheres have also gained increasing attention in biosensor applications due to their high specific surface area and the wide variety of compositions available. In this study, chemically designed and synthesized microspheres with active functional groups were used to promote effective miRNA immobilization resulting in better biorecognition. Upon conjugation with fluorescence-labeled complimentary probes, acylate-based spheres have indirectly detected MiR159, offering significantly enhanced analytical sensitivity, specificity, and accuracy while yielding a considerably low limit of detection (LOD) of 40 picomolar. Furthermore, MiR159 presence, which is known to be inversely correlated to breast cancer incidence and progression, was successfully detected in a competitive assay, which is promising for upgrading the current assay to clinical use.
Journal Article
Effect of Anti-ApoA-I Antibody-Coating of Stents on Neointima Formation in a Rabbit Balloon-Injury Model
2015
Since high-density lipoprotein (HDL) has pro-endothelial and anti-thrombotic effects, a HDL recruiting stent may prevent restenosis. In the present study we address the functional characteristics of an apolipoprotein A-I (ApoA-I) antibody coating in vitro. Subsequently, we tested its biological performance applied on stents in vivo in rabbits.
The impact of anti ApoA-I- versus apoB-antibody coated stainless steel discs were evaluated in vitro for endothelial cell adhesion, thrombin generation and platelet adhesion. In vivo, response to injury in the iliac artery of New Zealand white rabbits was used as read out comparing apoA-I-coated versus bare metal stents.
ApoA-I antibody coated metal discs showed increased endothelial cell adhesion and proliferation and decreased thrombin generation and platelet adhesion, compared to control discs. In vivo, no difference was observed between ApoA-I and BMS stents in lumen stenosis (23.3±13.8% versus 23.3±11.3%, p=0.77) or intima surface area (0.81±0.62 mm2 vs 0.84±0.55 mm2, p=0.85). Immunohistochemistry also revealed no differences in cell proliferation, fibrin deposition, inflammation and endothelialization.
ApoA-I antibody coating has potent pro-endothelial and anti-thrombotic effects in vitro, but failed to enhance stent performance in a balloon injury rabbit model in vivo.
Journal Article
Polypropylene Meshes to Prevent Abdominal Herniation. Can Stable Coatings Prevent Adhesions in the Long Term?
by
Gijbels, Marion J.J
,
Greve, Jan-Willem M
,
Koole, Leo H
in
Animals
,
Biochemistry
,
Biodegradation
2009
Abdominal surgery is associated with a significant risk for incisional herniation. Hernia repair is routinely performed by implantation of synthetic meshes. Such meshes may cause serious adhesions between the implanted material and organs leading to intestinal obstruction or enterocutaneous fistulas. This study compares three knitted meshes for their capacity to prevent adhesion formation in an in vivo study. The meshes evaluated are polypropylene (Prolene®), polypropylene coated with oxygenated regenerated cellulose--in principle--a biodegradable biomaterial (Proceed®), and Prolene® coated with a nondegradable copolymer of the hydrophilic building block N-vinyl pyrrolidone (NVP) and the hydrophobic building block n-butylmethacrylate (BMA). The meshes were implanted in the abdomen of rats (follow-up 7 or 30 days). After 7 days, the formation of adhesions decreased in the order: Prolene® > NVP/BMA-coated Prolene® > Proceed®; after 30 days, this order changed into: Proceed® > Prolene® > NVP/BMA-coated Prolene®. Both at 7 and at 30 days, Proceed® was the only mesh surrounded by macrophage cells that contained foreign materials, presumably degradation products of the (biodegradable) surface coating. The data indicate that long-term protection of implanted meshes against excessive adhesions may be achieved through stable biocompatible hydrogel surface coatings.
Journal Article
Theoretical study of spin-spin coupling across the hydrogen (O-H⋯N) bond in adenosine derivatives
by
Strupińska, Agnieszka
,
Roszak, Szczepan
,
Prokopowicz, Monika
in
Adenine
,
Adenosine
,
Adenosine - analogs & derivatives
2009
The study of spin-spin coupling constants across hydrogen bond provides useful information about configuration of complexes. The interesting case of such interactions was observed as a coupling across an intramolecular hydrogen bond in 8-bromo-2′,3′-
O
-isopropylideneadenosine between the -CH
2
OH (at 5″ proton) group and the nitrogen atom of adenine. In this paper we report theoretical investigations on the
4h
J
NH
coupling across the H″-C-O-H···N hydrogen bond in adenosine derivatives in various solvent models.
Figure
Coupling constants in 8-bromo-2′,3′-
O
-isopropylideneadenosine
Journal Article
Polyurethane Organosilicate Nanocomposites as Blood Compatible Coatings
2012
Polymer clay nanocomposites (NCs) show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs) coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659) or the peak thrombin (p = 0.999) of polyurethane (PU). PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM). The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs. This was thought to be from competitive interactions between clay-heparin that influenced the formation of the ternary complex between heparin, ATIII thrombin. In summary, the feasibility of using PUNC as drug delivery coatings was shown by the good uniformity in the coating, absence of by-products from the coating process, and the release of active molecules without significantly interfering with their activity.
Journal Article
New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles
2011
Bacterial infection from medical devices is a major problem and accounts for an increasing number of deaths as well as high medical costs. Many different strategies have been developed to decrease the incidence of medical device related infection. One way to prevent infection is by modifying the surface of the devices in such a way that no bacterial adhesion can occur. This requires modification of the complete surface with, mostly, hydrophilic polymeric surface coatings. These materials are designed to be non-fouling, meaning that protein adsorption and subsequent microbial adhesion are minimized. Incorporation of antimicrobial agents in the bulk material or as a surface coating has been considered a viable alternative for systemic application of antibiotics. However, the manifestation of more and more multi-drug resistant bacterial strains restrains the use of antibiotics in a preventive strategy. The application of silver nanoparticles on the surface of medical devices has been used to prevent bacterial adhesion and subsequent biofilm formation. The nanoparticles are either deposited directly on the device surface, or applied in a polymeric surface coating. The silver is slowly released from the surface, thereby killing the bacteria present near the surface. In the last decade there has been a surplus of studies applying the concept of silver nanoparticles as an antimicrobial agent on a range of different medical devices. The main problem however is that the exact antimicrobial mechanism of silver remains unclear. Additionally, the antimicrobial efficacy of silver on medical devices varies to a great extent. Here we will review existing antimicrobial coating strategies and discuss the use of silver or silver nanoparticles on surfaces that are designed to prevent medical device related infections.
Journal Article