Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
634 result(s) for "Krüger, Martin"
Sort by:
Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation
The authors use in vivo imaging to examine astrocyte dynamics after a cortical injury over the course of several weeks. They reveal a heterogeneity in astrocyte responses and show that astrocytes do not migrate toward the injury site, but instead proliferate in the juxtavascular region. Astrocytes are thought to have important roles after brain injury, but their behavior has largely been inferred from postmortem analysis. To examine the mechanisms that recruit astrocytes to sites of injury, we used in vivo two-photon laser-scanning microscopy to follow the response of GFP-labeled astrocytes in the adult mouse cerebral cortex over several weeks after acute injury. Live imaging revealed a marked heterogeneity in the reaction of individual astrocytes, with one subset retaining their initial morphology, another directing their processes toward the lesion, and a distinct subset located at juxtavascular sites proliferating. Although no astrocytes actively migrated toward the injury site, selective proliferation of juxtavascular astrocytes was observed after the introduction of a lesion and was still the case, even though the extent was reduced, after astrocyte-specific deletion of the RhoGTPase Cdc42. Thus, astrocyte recruitment after injury relies solely on proliferation in a specific niche.
Shewanella putrefaciens, a rare human pathogen: A review from a clinical perspective
Shewanella putrefaciens is a gramnegative, facultatively anaerobic, rod shaped bacterium. It belongs to the class of the Gammaproteobacteria and was first described in 1931. S. putrefaciens is part of the marine microflora and especially present in moderate and warm climates. The bacterium is a rare oppurtonistic human pathogen associated mainly with intra-abdominal as well as skin and soft tissue infections. However, it has also been reported in association with more severe diseases such as pneumonia, intracerebral and ocular infections and endocarditis. In these cases the clinical courses are often associated with underlying, predisposing diseases and risk factors. For successful treatment of S. putrefaciens , a combination of appropriate local therapy, e.g. surgical treatment or drainage, and antibiotic therapy should be performed. Since multiple resistances to antibiotics are described, the results of the antimicrobial susceptibility testing must be considered for effective therapy as well. Furthermore, a main challenge in clinical practice is the accurate microbiological identification, and especially the correct differentiation between S. putrefaciens and S. algae . Under certain circumstances, Shewanella -infections can have severe, sometimes even fatal consequences. Therefore, we decided to present the current state of knowledge as well as further aspects with regard to future diagnostics, therapy and research.
Grave thoraco-intestinal complication secondary to an undetected traumatic rupture of the diaphragm: a case report
Background Diaphragmatic lesions as a result of blunt or penetrating trauma are challenging to detect in the initial trauma setting. This is especially true when diaphragmatic trauma is part of a polytrauma. Complications of undetected diaphragmatic defects with incarcerating bowel are rare, but as in our patient can be serious. Case presentation A 57-year-old female presented to the Emergency Room of our Hospital in a critical condition with 3 days of increasing abdominal pain. The initial clinical examination showed peritonism with tinkling peristaltic bowel sounds of mechanical obstruction. A thoraco-abdominal CT scan demonstrated colon prolapsed through the left diaphragmatic center with a large sero-pneumothorax under tension. As the patient was hemodynamically increasingly unstable with developing septic shock, an emergency laparotomy was performed. After retraction of the left colon, which had herniated through a defect of the tendinous center of the left diaphragm and was perforated due to transmural ischemia, large amounts of feces and gas discharged from the left thorax. A left hemicolectomy resulting in a Hartmann-type procedure was performed. A fully established pleural empyema required meticulous debridement and lavage conducted via the 7–10 cm in diameter phrenic opening followed by a diaphragmatic defect reconstruction. Due to pneumonia and recurring pleural empyema redo-debridement of the left pleural space via thoracotomy were required. The patient was discharged on day 56. A thorough history of possible trauma revealed a bicycle-fall trauma 7 months prior to this hospitalization with a surgically stabilized fracture of the left femur and conservatively treated fractures of ribs 3–9 on the left side. Conclusion This is the first report on a primarily established empyema at the time of first surgical intervention for feco-pneumothorax secondary to delayed diagnosed diaphragmatic rupture following abdomino-thoracic blunt trauma with colic perforation into the pleural space, requiring repetitive surgical debridement in order to control local and systemic sepsis. Thorough investigation should always be undertaken in cases of blunt abdominal and thoracic trauma to exclude diaphragmatic injury in order to avoid post-traumatic complications.
A standardized suprapubic bottom-to-up approach in robotic right colectomy: technical and oncological advances for complete mesocolic excision (CME)
Backround Several studies have demonstrated a direct correlation between lymph node yield and survival after colectomy for cancer. Complete mesocolic excision (CME) in right colectomy (RC) reduces local recurrence but is technically demanding. Here we report our early single center experience with robotic right colectomy comparing our standardized bottom-to-up (BTU) approach of robotic RC with CME and central vessel ligation (CVL) facilitated by a suprapubic access with the “classical” medial-to-lateral (MTL) strategy. Methods A 4-step BTU approach of robotic RC guided by embryonal planes in the process of retrocolic mobilization with suprapubic port placement was performed in the BTU-group ( n  = 24; all with intention to treat cancer). In step 1 CME was initiated with caudolateral mobilization of the right colon guided by the fascia of Toldt across the duodenum and up to the Trunk of Henle. Subsequently, dissection was performed BTU right of the middle supramesenteric vessels with central ileocolic vessel ligation in step 2. Subsequent to separation of the transverse retromesenteric space and completion of mobilization the hepatic flexure in step 3, the transverse mesocolon was then transected right of the middle colic vessels in step 4. An extracorporeal side to side anastomosis was performed. We compared the outcome of the BTU-group with a MTL-group ( n  = 7). Results Patient characteristics like age, gender, BMI, comorbidity (ASA) and M-status were comparable among groups. There was no conversion. Overall complication rate was 35.5%. We experienced no anastomoses insufficiency, grade Dindo/Clavien III/IV complication or mortality in this study. Type I and II complications and surgical characteristics incl. OR-time, ICU- and hospital-stay were comparable between the two groups. However, the lymph node yield was superior in the BTU-group (mean 40.2 ± 17.1) when compared with the MTL-group (16,3 nodes ±8.5; p  <  0,001). Conclusions Compared to the classical MTL approach, robotic suprapubic BTU RC changes from a search of the layers bordering the oncological dissection to a consequent utilization of the planes as a retro-mesocolic guide during CME. The BTU strategy could bear the potential to increase the lymph node yield. Robotic systems may provide the technical requirements to combine advantages of both open and minimally invasive RC.
Environmental Control on Anaerobic Oxidation of Methane in the Gassy Sediments of Eckernförde Bay (German Baltic)
We investigated the effect of seasonal environmental changes on the rate and distribution of anaerobic oxidation of methane (AOM) in Eckernförde Bay sediments (German Baltic Sea) and identified organisms that are likely to be involved in the process. Surface sediments were sampled during September and March. Field rates of AOM and sulfate reduction (SR) were measured with radiotracer methods. Additional parameters were determined that potentially influence AOM, i.e., temperature, salinity, methane, sulfate, and chlorophyll a. Methanogenesis as well as potential rates of AOM and aerobic oxidation of methane were measured in vitro. AOM changed seasonally within the upper 20 cm of the sediment, with rates being between 1 and 14 nmol cm-3 d-1. Its distribution is suggested to be controlled by oxygen and sulfate penetration, temperature, as well as methane supply, leading to a shallow AOM zone during the warm productive season and to a slightly deeper AOM zone during the cold winter season. Rising methane bubbles apparently fed AOM above the sulfate-methane transition. Methanosarcinales-related anaerobic methanotrophs (ANME-2), identified with fluorescence in situ hybridization, is suggested to mediate AOM in Eckernförde Bay. These archaea are known also from other marine methane-rich locations. However, they were not directly associated with sulfate-reducing bacteria. AOM is possibly mediated solely by these archaea that show a mesophilic physiology according to the seasonal temperature changes in Eckernförde Bay.
A Review on Scene Prediction for Automated Driving
Towards the aim of mastering level 5, a fully automated vehicle needs to be equipped with sensors for a 360∘ surround perception of the environment. In addition to this, it is required to anticipate plausible evolutions of the traffic scene such that it is possible to act in time, not just to react in case of emergencies. This way, a safe and smooth driving experience can be guaranteed. The complex spatio-temporal dependencies and high dynamics are some of the biggest challenges for scene prediction. The subtile indications of other drivers’ intentions, which are often intuitively clear to the human driver, require data-driven models such as deep learning techniques. When dealing with uncertainties and making decisions based on noisy or sparse data, deep learning models also show a very robust performance. In this survey, a detailed overview of scene prediction models is presented with a historical approach. A quantitative comparison of the model results reveals the dominance of deep learning methods in current state-of-the-art research in this area, leading to a competition on the cm scale. Moreover, it also shows the problem of inter-model comparison, as many publications do not use standardized test sets. However, it is questionable if such improvements on the cm scale are actually necessary. More effort should be spent in trying to understand varying model performances, identifying if the difference is in the datasets (many simple situations versus many corner cases) or actually an issue of the model itself.
Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-¹³C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogensis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: ‘methyl coenzyme A' changed to ‘methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings.
Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications
Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.
Biodiversity Assessment and Conservation Strategies
The efficient representation of all species in conservation planning is problematic. Often, species distribution is assessed by dividing the land into a grid; complementary sets of grids, in which each taxon is represented at least once, are then sought. To determine if this approach provides useful surrogate information, species and higher taxon data for South African plants and animals were analyzed. Complementary species sets did not coincide and overlapped little with higher taxon sets. Survey extent and taxonomic knowledge did not affect this overlap. Thus, the assumptions of surrogacy, on which so much conservation planning is based, are not supported.
Identification of Id4 as a Regulator of BRCA1 Expression by Using a Ribozyme-Library-Based Inverse Genomics Approach
Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an \"inverse genomics\" approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer.