MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Review on Scene Prediction for Automated Driving
A Review on Scene Prediction for Automated Driving
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Review on Scene Prediction for Automated Driving
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Review on Scene Prediction for Automated Driving
A Review on Scene Prediction for Automated Driving

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Review on Scene Prediction for Automated Driving
A Review on Scene Prediction for Automated Driving
Journal Article

A Review on Scene Prediction for Automated Driving

2022
Request Book From Autostore and Choose the Collection Method
Overview
Towards the aim of mastering level 5, a fully automated vehicle needs to be equipped with sensors for a 360∘ surround perception of the environment. In addition to this, it is required to anticipate plausible evolutions of the traffic scene such that it is possible to act in time, not just to react in case of emergencies. This way, a safe and smooth driving experience can be guaranteed. The complex spatio-temporal dependencies and high dynamics are some of the biggest challenges for scene prediction. The subtile indications of other drivers’ intentions, which are often intuitively clear to the human driver, require data-driven models such as deep learning techniques. When dealing with uncertainties and making decisions based on noisy or sparse data, deep learning models also show a very robust performance. In this survey, a detailed overview of scene prediction models is presented with a historical approach. A quantitative comparison of the model results reveals the dominance of deep learning methods in current state-of-the-art research in this area, leading to a competition on the cm scale. Moreover, it also shows the problem of inter-model comparison, as many publications do not use standardized test sets. However, it is questionable if such improvements on the cm scale are actually necessary. More effort should be spent in trying to understand varying model performances, identifying if the difference is in the datasets (many simple situations versus many corner cases) or actually an issue of the model itself.