Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Kuka, Janis"
Sort by:
Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.
Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice
The current study aimed to explore whether metformin, the most widely prescribed oral medication for the treatment of type 2 diabetes, alters plasma levels of cardiometabolic disease-related metabolite trimethylamine N-oxide (TMAO) in db/db mice with type 2 diabetes. TMAO plasma concentration was up to 13.2-fold higher in db/db mice when compared to control mice, while in db/db mice fed choline-enriched diet, that mimics meat and dairy product intake, TMAO plasma level was increased 16.8-times. Metformin (250 mg/kg/day) significantly decreased TMAO concentration by up to twofold in both standard and choline-supplemented diet-fed db/db mice plasma. In vitro, metformin significantly decreased the bacterial production rate of trimethylamine (TMA), the precursor of TMAO, from choline up to 3.25-fold in K. pneumoniae and up to 26-fold in P. Mirabilis , while significantly slowing the growth of P. Mirabilis only. Metformin did not affect the expression of genes encoding subunits of bacterial choline-TMA-lyase microcompartment, the activity of the enzyme itself and choline uptake, suggesting that more complex regulation beyond the choline-TMA-lyase is present. To conclude, the TMAO decreasing effect of metformin could be an additional mechanism behind the clinically observed cardiovascular benefits of the drug.
Excretion of the Polymyxin Derivative NAB739 in Murine Urine
Extremely multiresistant strains of Enterobacteriaceae are emerging and spreading at a worrisome pace. Polymyxins are used as the last-resort therapy against such strains, in spite of their nephrotoxicity. We have previously shown that novel polymyxin derivatives NAB739 and NAB815 are less nephrotoxic in cynomolgus monkeys than polymyxin B and are therapeutic in murine Escherichia coli pyelonephritis at doses only one-tenth of that needed for polymyxin B. Here we evaluated whether the increased efficacy is due to increased excretion of NAB739 in urine. Mice were treated with NAB739 and polymyxin B four times subcutaneously at doses of 0.25, 0.5, 1, 2, and 4 mg/kg. In plasma, a clear dose–response relationship was observed. The linearity of Cmax with the dose was 0.9987 for NAB739 and 0.975 for polymyxin B. After administration of NAB739 at a dose of 0.25 mg/kg, its plasma concentrations at all tested time points were above 0.5 µg/mL while after administration at a dose of 0.5 mg/kg its plasma concentrations exceeded 1 µg/mL. The Cmax of NAB739 in plasma was up to 1.5-times higher after single (first) administration and up to two-times higher after the last administration when compared to polymyxin B. Polymyxin B was not detected in urine samples even when administered at 4 mg/kg. In contrast, the concentration of NAB739 in urine after single administration at a dose of 0.25 mg/kg was above 1 µg/mL and after administration of 0.5 mg/kg its average urine concentration exceeded 2 µg/mL. At the NAB739 dose of 4 mg/kg, the urinary concentrations were higher than 35 µg/mL. These differences explain our previous finding that NAB739 is much more efficacious than polymyxin B in the therapy of murine E. coli pyelonephritis.
Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia
The suppression of energy metabolism is one of cornerstones of cardiac dysfunction in sepsis/endotoxaemia. To investigate the role of fatty acid oxidation (FAO) in the progression of inflammation‐induced cardiac dysfunction, we compared the effects of FAO‐targeting compounds on mitochondrial and cardiac function in an experimental model of lipopolysaccharide (LPS)‐induced endotoxaemia. In LPS‐treated mice, endotoxaemia‐induced inflammation significantly decreased cardiac FAO and increased pyruvate metabolism, while cardiac mechanical function was decreased. AMP‐activated protein kinase activation by A769662 improved mitochondrial FAO without affecting cardiac function and inflammation‐related gene expression during endotoxaemia. Fatty acid synthase inhibition by C75 restored both cardiac and mitochondrial FAO; however, no effects on inflammation‐related gene expression and cardiac function were observed. In addition, the inhibition of carnitine palmitoyltransferase 2 (CPT2)‐dependent FAO by aminocarnitine resulted in the accumulation of FAO intermediates, long‐chain acylcarnitines, in the heart. As a result, cardiac pyruvate metabolism was inhibited, which further exacerbated inflammation‐induced cardiac dysfunction. In conclusion, although inhibition of CPT2‐dependent FAO is detrimental to cardiac function during endotoxaemia, present findings show that the restoration of cardiac FAO alone is not sufficient to recover cardiac function. Rescue of cardiac FAO should be combined with anti‐inflammatory therapy to ameliorate cardiac dysfunction in endotoxaemia.
Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice
The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice—i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.
Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria
In the heart, a nutritional state (fed or fasted) is characterized by a unique energy metabolism pattern determined by the availability of substrates. Increased availability of acylcarnitines has been associated with decreased glucose utilization; however, the effects of long-chain acylcarnitines on glucose metabolism have not been previously studied. We tested how changes in long-chain acylcarnitine content regulate the metabolism of glucose and long-chain fatty acids in cardiac mitochondria in fed and fasted states. We examined the concentrations of metabolic intermediates in plasma and cardiac tissues under fed and fasted states. The effects of substrate availability and their competition for energy production at the mitochondrial level were studied in isolated rat cardiac mitochondria. The availability of long-chain acylcarnitines in plasma reflected their content in cardiac tissue in the fed and fasted states, and acylcarnitine content in the heart was fivefold higher in fasted state compared to the fed state. In substrate competition experiments, pyruvate and fatty acid metabolites effectively competed for the energy production pathway; however, only the physiological content of acylcarnitine significantly reduced pyruvate and lactate oxidation in mitochondria. The increased availability of long-chain acylcarnitine significantly reduced glucose utilization in isolated rat heart model and in vivo. Our results demonstrate that changes in long-chain acylcarnitine contents could orchestrate the interplay between the metabolism of pyruvate–lactate and long-chain fatty acids, and thus determine the pattern of energy metabolism in cardiac mitochondria.
Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.
Activated peroxisomal fatty acid metabolism improves cardiac recovery in ischemia-reperfusion
Depressed oxidation of long chain fatty acids (LCFA) in heart ischemia leads to acute accumulation of LCFA metabolites that impair the functioning of the mitochondria. We hypothesized that reduced activity of carnitine palmitoyltransferase-I (CPT-I) might activate peroxisomal LCFA oxidation and protect mitochondrial function in ischemia and reperfusion. In the present study, despite the long-term threefold reduction in L-carnitine content by 3-(2,2,2-trimethylhydrazinium)-propionate, the uptake and oxidation rates of LCFA in the heart in normoxia were not significantly influenced. The significant increase in PPARα and PGC1α nuclear content, observed in this study, were followed by increased expression of genes involved in peroxisomal fatty acid oxidation (FAO) which compensated for the limited CPT-I-dependent FA transport into the mitochondria. In ischemia followed by reperfusion, the redirection of LCFA oxidation from mitochondria to peroxisomes protected the mitochondria from the accumulation of LCFA. In turn, the recovery of FAO resulted in significant reduction of myocardial infarct size. In conclusion, the decreased L-carnitine content in the heart preserves its peroxisomal and mitochondrial function after ischemia and improves cardiac recovery during reperfusion. The functional interplay between the decrease in L-carnitine and the PPARα/PGC1α pathway-induced redirection of FA metabolism protects the mitochondria against LCFA overload and provides a foundation for novel cardioprotective mechanisms.
Myocardial Infarct Size-Limiting and Anti-Arrhythmic Effects of Mildronate Orotate in the Rat Heart
Purpose Mildronate and orotic acid act as modulators of energy metabolism and are considered as cardioprotective agents. This study was performed to compare the cardioprotective effects of mildronate, orotic acid and mildronate orotate. Methods Male Wistar rats received mildronate, orotic acid or mildronate orotate for 14 days. The isolated rat heart infarction and isoproterenol-induced ischemia models were used to test the cardioprotective effects of compounds studied. Experimental arrhythmias were induced by the ligation of the left anterior descending coronary artery for 10 min with subsequent reperfusion or by administration of calcium chloride or aconitine at arrhythmogenic doses. Results The data obtained showed a statistically significant decrease of necrotic area in 25% of infarcted rat hearts after 14 days of treatment with mildronate and orotic acid, whereas mildronate orotate decreased the infarct size by 50%. Moreover, we found that the administration of mildronate and its orotate salt decreased the duration and incidence of arrhythmias in experimental arrhythmia models. Conclusions The study provides experimental evidence that the combination of orotic acid and mildronate possesses additive pharmacological effects and that mildronate orotate might be considered as a powerful therapeutic agent facilitating recovery from ischemia-reperfusion injury.
A short-term high-dose administration of sodium pivalate impairs pyruvate metabolism without affecting cardiac function
The pivalate moiety of some oral antibiotics enhances their intestinal absorption, but liberated pivalic acid decreases tissue carnitine concentration and could lead to impaired energy metabolism. The present study investigated the effects of short-term sodium pivalate administration on cardiac functionality and mitochondrial energy metabolism. Wistar rats received sodium pivalate (40 mM) in their drinking water for 14 days, and the carnitine content was measured in heart tissues. The activities of carnitine-dependent enzymes, including carnitine acetyltransferase (CrAT) and carnitine palmitoyltransferase I (CPT I), and the mitochondrial respiration rate were also measured. The isolated rat heart ischemia–reperfusion injury assay was performed based on the Langendorff technique through the reversible occlusion of the left anterior descending coronary artery. The administration of sodium pivalate decreased carnitine concentration in the myocardium by 37 %. Sodium pivalate significantly decreased mitochondrial respiration on pyruvate/malate by 28 %. The activities of CrAT and CPT I in sodium pivalate-treated animals were decreased by 34 and 30 %, respectively. No differences were observed in the infarct size or in the heart functional parameters between the groups. Together, these results indicate that the short-term administration of a high dose of sodium pivalate impairs cardiac mitochondrial energy metabolism without depressing cardiac function during ischemia–reperfusion injury.