Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
86 result(s) for "Kupatt, Christian"
Sort by:
Interdependence of Angiogenesis and Arteriogenesis in Development and Disease
The structure of arterial networks is optimized to allow efficient flow delivery to metabolically active tissues. Optimization of flow delivery is a continuous process involving synchronization of the structure and function of the microcirculation with the upstream arterial network. Risk factors for ischemic cardiovascular diseases, such as diabetes mellitus and hyperlipidemia, adversely affect endothelial function, induce capillary regression, and disrupt the micro- to macrocirculation cross-talk. We provide evidence showing that this loss of synchronization reduces arterial collateral network recruitment upon arterial stenosis, and the long-term clinical outcome of current revascularization strategies in these patient cohorts. We describe mechanisms and signals contributing to synchronized growth of micro- and macrocirculation in development and upon ischemic challenges in the adult organism and identify potential therapeutic targets. We conclude that a long-term successful revascularization strategy should aim at both removing obstructions in the proximal part of the arterial tree and restoring “bottom-up” vascular communication.
Genome editing for Duchenne muscular dystrophy: a glimpse of the future?
Mutations in Dystrophin, one of the largest proteins in the mammalian body, are causative for a severe form of muscle disease, Duchenne Muscular Dystrophy (DMD), affecting not only skeletal muscle, but also the heart. In particular, exons 45–52 constitute a hotspot for DMD mutations. A variety of molecular therapies have been developed, comprising vectors encoding micro- and minidystrophins as well as utrophin, a protein with partially overlapping functions. With the advent of the CRISPR-Cas9-nuclease, genome editing offers a novel option of correction of the disease-cuasing mutations. Full restoration of the healthy gene by homology directed repair is a rare event. However, non-homologous end-joining (NHEJ) may restore the reading frame by causing exon excision. This approach has first been demonstrated in mice and then translated to large animals (dogs, pigs). This review discusses the potential opportunities and limitations of genome editing in DMD, including the generation of appropriate animal models as well as new developments in genome editing tools.
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells
It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node. The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses.
Fibrinolysis for Patients with Intermediate-Risk Pulmonary Embolism
In a randomized trial, 1006 patients with intermediate-risk pulmonary embolism were assigned to tenecteplase or placebo in addition to standard heparin therapy. The tenecteplase group had a lower rate of hemodynamic decompensation but more frequent major hemorrhage and stroke. Acute pulmonary embolism occurs frequently and may cause death or serious disability. 1 Case fatality rates vary widely, 2 , 3 but approximately 10% of all patients with acute pulmonary embolism die within 3 months after the diagnosis. 4 , 5 Acute right ventricular pressure overload at diagnosis is an important determinant of the severity and early clinical outcome of pulmonary embolism. 6 High-risk pulmonary embolism 7 is characterized by overt hemodynamic instability and warrants immediate advanced therapy, including consideration of fibrinolysis. In contrast, for patients presenting without systemic hypotension or hemodynamic compromise, standard anticoagulation is generally considered adequate treatment. 8 However, patients who have acute right ventricular . . .
The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models
Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1. Arterial flow regulates artery diameter but other mechanisms may also affect this. Here, the authors show that the guanine nucleotide exchange factor Trio and GTPases Rac1 and RhoG, triggers F-actin remodeling in arterial endothelial cells, independent of flow, to enhance lumen diameter in zebrafish and cell models.
Emergency treatment of decompensated aortic stenosis
ObjectiveThe optimal treatment of patients with acute and severe decompensation of aortic stenosis is unclear due to recent advances in transcatheter interventions and supportive therapies. Our aim was to assess the early outcome of emergency transcatheter aortic valve implantation (eTAVI) versus emergency balloon aortic valvuloplasty (eBAV) followed by TAVI under elective circumstances.MethodsEmergency conditions were defined as: cardiogenic shock with requirement of catecholamine therapy, severe acute dyspnoea (NYHA IV), cardiac resuscitation or mechanic respiratory support. The data were collected according to the Valve Academic Research Consortium 2 (VARC-2) criteria.ResultsIn five German centres, 23 patients (logistic Euroscore 37.7%±18.1) underwent eTAVI and 118 patients underwent eBAV (logistic Euroscore 35.3%±20.8). In the eTAVI group, immediate procedural mortality was 8.7%, compared with 20.3% for the eBAV group (p=0.19). After 30 days, cardiovascular mortality for the eTAVI group was 23.8% and for the eBAV group 33.0% (p=0.40). Analyses adjusting for potential confounders did not provide evidence of a difference between groups. Of note, the elective TAVI performed after eBAV (n=32, logistic Euroscore 25.9%±13.9) displayed an immediate procedural mortality of 9.4% and a cardiovascular mortality after 30 days of 15.6%. Major vascular complications were significantly more likely to occur after eTAVI (p=0.01) as well as stroke (p=0.01).ConclusionIn this multicentre cohort, immediate procedural and 30-day mortality of eTAVI and eBAV were high, and mortality of secondary TAVI subsequent to eBAV was higher than expected. Randomised study data are required to define the role of emergency TAVI in tertiary care centres with current device generations.
Regulation of monocyte cell fate by blood vessels mediated by Notch signalling
A population of monocytes, known as Ly6C lo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C hi monocytes into Ly6C lo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo , while culture on recombinant DLL1 induces monocyte conversion in vitro . Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. Circulating Ly6C lo monocytes are thought to be derived from Ly6C hi subset. Here the authors show that Notch signalling is activated in Ly6C lo cells and is required for their differentiation, and that Notch ligands that initiate this signalling are provided by a subset of endothelial cells.
Impact of transcatheter mitral valve repair using MitraClip on right ventricular remodeling
The potential of the MitraClip to prevent from right heart failure or to restore right ventricular (RV) function is still unclear. The aim of the present study was to analyze the impact of the MitraClip implantation on RV function and its association with clinical outcome. After MitraClip implantation patients underwent echocardiography follow-up scheduled between 3 and 6 months after the procedure in the present single-center registry. A total of 93 patients were included. Compared to baseline, RV function declined in 20%, was unchanged in 25% and improved in 55% of the patients. Factors associated with decline in RV performance were atrial fibrillation, decrease in left ventricular function and lack of reduction in pulmonary artery pressure. Patients who experienced worsening in RV function had a significantly lower survival after mean follow-up of 11 ± 7 months compared to those with preserved or improved RV function (15% vs. 83% vs. 83%; p log rank = 0.001). Furthermore, changes in TAPSE were found to be an independent predictor for all-cause mortality [HR 0.88 (0.77–0.99); p = 0.04]. The majority of patients suffering from severe MR benefited from MitraClip with respect to RV remodeling. However, 20% of the patients experienced a decline in RV function, which was associated with poor prognosis. Importantly, changes in RV function after MitraClip were identified as independent predictor for survival in contrast to baseline RV function and, therefore, should be implemented in follow-up routine for better outcome prediction.
Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context. Organs develop unique vascular architectures to support physiological functions. Here, authors show that organo-typical vascular networks may arise from specific parenchymal cues activating unique endothelial subtypes and angiogenic sprouting processes.
Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors
Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host–graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury. In this study, the authors report that pluripotent stem cell-derived ventricular progenitors target loss of myocardium and fibrotic scarring to promote heart regeneration, thus offering new potential therapeutic strategies for heart injury.