Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
973
result(s) for
"Laboratoire d"
Sort by:
Warming reduces global agricultural production by decreasing cropping frequency and yields
by
Makowski, David
,
Mueller, Nathaniel D
,
Jin, Zhenong
in
Agricultural land
,
Agricultural production
,
Agriculture
2022
Annual food caloric production is the product of caloric yield, cropping frequency (CF, number of production seasons per year) and cropland area. Existing studies have largely focused on crop yield, whereas how CF responds to climate change remains poorly understood. Here, we evaluate the global climate sensitivity of caloric yields and CF at national scale. We find a robust negative association between warming and both caloric yield and CF. By the 2050s, projected CF increases in cold regions are offset by larger decreases in warm regions, resulting in a net global CF reduction (−4.2 ± 2.5% in high emission scenario), suggesting that climate-driven decline in CF will exacerbate crop production loss and not provide climate adaptation alone. Although irrigation is effective in offsetting the projected production loss, irrigation areas have to be expanded by >5% in warm regions to fully offset climate-induced production losses by the 2050s.Climate change will impact agriculture, and this study shows cropping frequency and caloric yield are negatively impacted on the global scale by warming. While cold regions will increase cropping frequency, warm regions will see greater decreases, resulting in an overall decline in production.
Journal Article
Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma
by
Department of Biomedical Molecular Biology ; Universiteit Gent = Ghent University = Université de Gand (UGENT)
,
VIB-UGent Center for Medical Biotechnology
,
Savvides, Savvas N
in
13/106
,
13/31
,
631/154/51/2314
2017
The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor a-chain (IL-7Ra) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Ra extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency.
Journal Article
Tick–Host–Pathogen Interactions: Conflict and Cooperation
by
European Project: 278976,EC:FP7:HEALTH,FP7-HEALTH-2011-two-stage,ANTIGONE
,
Estrada-Peña, Agustin
,
Ayllon, Nieves
in
Analysis
,
Animal diseases
,
Animals
2016
[...]both ticks and hosts react to tick infestation and/or pathogen infection by activating different mechanisms to fight against tick infestations and limit pathogen infection [4-7]. [...]the generally accepted view is that tick infestation and pathogen infection produce detrimental effects on both hosts and ticks that highlight a conflict between hosts, ticks, and pathogens (Fig 1A; see also S1 Video) [5,7]. Because of the growing impact of tick-borne pathogens on human and animal health, more effective measures are needed for the control of tick-borne diseases, and the understanding of the molecular interactions between vertebrate hosts, tick vectors, and transmitted pathogens is crucial towards achieving this goal [15].
Journal Article
Reactive responses of zebras to lion encounters shape their predator-prey space game at large scale
by
Chamaillé-Jammes, Simon
,
Loveridge, Andrew
,
Makuwe, Edwin
in
Environmental Sciences
,
Equus
,
Equus quagga
2016
The predator–prey space game and the costs associated with risk effects are affected by prey 1) proactive adjustments (when prey modify their behaviour in response to an a priori assessment of the risk level) and 2) reactive adjustments (when prey have detected an immediate threat). Proactive adjustments are generally well‐studied, whereas the frequency, strength and duration of reactive adjustments remain largely unknown. We studied the space use and habitat selection of GPS‐collared zebras Equus quagga from 2 to 48 h after an encounter with lions Panthera leo. Lion–zebra encounters generally occurred close to artificial waterholes (< 1 km). Two hours after an encounter, zebras were more likely to have fled than stay when the encounter occurred in more risky bushy areas. During their flight, zebras selected grasslands more than usual, getting great visibility. Regardless of their initial response, zebras finally fled at the end of the night and reached areas located far from waterholes where encounters with lions are less frequent. The large‐scale flights (∼4–5 km) of zebras led to a local zebra depression for lions. Zebras that had fled immediately after the encounter resumed their behaviour of coming close to waterholes on the following day. However, zebras that had initially stayed remained far from waterholes for an extra 24 h, remaining an elusive prey for longer. The delay in the flight decision had different short‐term consequences on the lion–zebra game. We reveal that the spatial context of the encounter shapes the immediate response of prey, and that encountering predators induces strong behavioural responses: prey flee towards distant, safer, areas and have a constrained use of key resource areas which are at the heart of the predator–prey game at larger spatio‐temporal scales. Nighttime encounters were infrequent (once every 35 days on average), zebra responses were short‐lived (< 36 h) but occurred over a large spatial scale (several km).
Journal Article
Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking
by
Lawton, Kieran
,
Charrassin, Jean-Benoît
,
South Australian Research and Development Institute [Australia] (SARDI)
in
Antarctic region
,
Antarctica
,
Arctocephalus
2015
Satellite telemetry data are a key source of animal distribution information for marine ecosystem management and conservation activities. We used two decades of telemetry data from the East Antarctic sector of the Southern Ocean. Habitat utilization models for the spring/summer period were developed for six highly abundant, wide-ranging meso- and top-predator species: Adélie Pygoscelisadeliae and emperor Aptenodytes forsteri penguins, light-mantled albatross Phoebetria palpebrata , Antarctic fur seals Arctocephalus gazella , southern elephant seals Mirounga leonina , and Weddell seals Leptony-chotes weddellii . The regional predictions from these models were combined to identify areas utilized by multiple species, and therefore likely to be of particular ecological significance. These areas were distributed across the longitudinal breadth of the East Antarctic sector, and were characterized by proximity to breeding colonies, both on the Antarctic continent and on subantarctic islands to the north, and by sea-ice dynamics, particularly locations of winter polynyas. These areas of important habitat were also congruent with many of the areas reported to be showing the strongest regional trends in sea ice seasonality. Th e results emphasize the importance of on-shore and sea-ice processes to Antarctic marine ecosystems. Our study provides ocean-basin-scale predictions of predator habitat utilization, an assessment of contemporary habitat use against which future changes can be assessed, and is of direct relevance to current conservation planning and spatial management efforts.
Journal Article
Cytoprotective activities of milk thistle seed oil used in traditional tunisian medicine on 7-ketocholesterol and 24s-hydroxycholesterol-induced toxicity on 158n murine oligodendrocytes
by
Institut préparatoire aux Etudes Scientifiques et Techniques
,
Brétillon, Lionel
,
High Institute of Food Industries ; Partenaires INRAE
in
158N murine oligodentrocytes
,
24S-hydroxycholesterol
,
7-ketocholesterol
2018
The Asteraceae family is economically very important, because many of these plants are grown mainly for their food value, such as lettuce (Lactuca), chicory (Cichorium), and sunflower (Heliantus aminus). One of the typical properties of this family, which includes milk thistle (Sylibum marianum), is the richness of the oil in various compounds (flavonoids, alkaloids, tocopherols, and unsaturated fatty acids). Currently, and for the coming decades, age-related diseases, including neurodegenerative diseases, are a major public health problem. Preventing their appearance or opposing their evolution is a major objective. In this context, the cytoprotective activities of milk thistle seed oil produced in Tunisia were studied on the 158N model using 7-ketocholesterol (7KC) and 24S-hydroxycholesterol (24S) as cytotoxic agents. 7KC and 24S were used because they can be increased in the brain and body fluids of patients with major age-related neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. In order to evaluate the cytoprotective properties of milk thistle seed oil, complementary techniques of microscopy, flow cytometry, and biochemistry were used. The chemical composition of milk thistle seed oil has also been determined by various chromatography techniques. Milk thistle seed oils from different area of Tunisia are rich in tocopherols and are strongly antioxidant according to various biochemical tests (KRL (Kit Radicaux Libres), FRAP (Ferric Reducing Antioxidant Power), and DPPH (2,2-diphenyl-1-picrylhydrazyl)). The main fatty acids are linoleic acid (C18:2 n-6) and oleic acid (C18:1 n-9). The main polyphenols identified are homovanillic acid, p-coumaric acid, quercetin, and apigenin, with a predominance of vanillic acid. On 158N cells, milk thistle seed oil attenuates the cytotoxicity of 7KC and 24S including: loss of cell adhesion, increased plasma membrane permeability, mitochondrial dysfunction, overproduction of reactive oxygen species, induction of apoptosis, and autophagy. The attenuation of the cytotoxicity of 7KC and 24S observed with the milk thistle seed oil is in the order of that observed with alpha-tocopherol used as a positive control. In the presence of nigella seed oil, considered potentially cytotoxic, no cytoprotective effects were observed. Given the chemical characteristics, antioxidant properties, and cytoprotective activities of milk thistle seed oil, our results highlight the potential benefit of this oil for human health.
Journal Article
Whole‐genome sequencing identifies interferon-induced protein IFI6/IFI27-like as a strong candidate gene for VNN resistance in European sea bass
2023
Background Viral nervous necrosis (VNN) is a major disease that affects European sea bass, and understanding the biological mechanisms that underlie VNN resistance is important for the welfare of farmed fish and sustainability of production systems. The aim of this study was to identify genomic regions and genes that are associated with VNN resistance in sea bass. Results We generated a dataset of 838,451 single nucleotide polymorphisms (SNPs) identified from whole-genome sequencing (WGS) in the parental generation of two commercial populations (A: 2371 individuals and B: 3428 individuals) of European sea bass with phenotypic records for binary survival in a VNN challenge. For each population, three cohorts were submitted to a red-spotted grouper nervous necrosis virus (RGNNV) challenge by immersion and genotyped on a 57K SNP chip. After imputation of WGS SNPs from their parents, quantitative trait loci (QTL) were mapped using a Bayesian sparse linear mixed model (BSLMM). We found several QTL regions that were specific to one of the populations on different linkage groups (LG), and one 127-kb QTL region on LG12 that was shared by both populations and included the genes ZDHHC14, which encodes a palmitoyltransferase, and IFI6/IFI27-like, which encodes an interferon-alpha induced protein. The most significant SNP in this QTL region was only 1.9 kb downstream of the coding sequence of the IFI6/IFI27-like gene. An unrelated population of four large families was used to validate the effect of the QTL. Survival rates of susceptible genotypes were 40.6% and 45.4% in populations A and B, respectively, while that of the resistant genotype was 66.2% in population B and 78% in population A. Conclusions We have identified a genomic region that carries a major QTL for resistance to VNN and includes the ZDHHC14 and IFI6/IFI27-like genes. The potential involvement of the interferon pathway, a well-known anti-viral defense mechanism in several organisms (chicken, human, or fish), in survival to VNN infection is of particular interest. Our results can lead to major improvements for sea bass breeding programs through marker-assisted genomic selection to obtain more resistant fish.
Journal Article
Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals
by
Esmaeel, Qassim
,
Pupin, Maude
,
Leclère, Valérie
in
active ingredients
,
Activity and Impact of Plant Biocontrol products
,
antibiotics
2018
Bacteria belonging to the genus
Burkholderia
live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of
Burkholderia
, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed.
Journal Article
Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium parvum Infectivity in Immunocompetent Suckling Mice
2015
Cryptosporidium spp., a significant cause of foodborne infection, have been shown to be resistant to most chemical food disinfectant agents and infective for weeks in irrigation waters and stored fresh vegetal produce. Pulsed UV light (PL) has the potential to inactivate Cryptosporidium spp. on surfaces of raw or minimally processed foods or both. The present study aimed to evaluate the efficacy of PL on viability and in vivo infectivity of Cryptosporidium parvum oocysts present on raspberries, a known source of transmission to humans of oocyst-forming apicomplexan pathogens. The skin of each of 20 raspberries was experimentally inoculated with five 10-μl spots of an oocyst suspension containing 6 × 10(7) oocysts per ml (Nouzilly isolate). Raspberries were irradiated by PL flashes (4 J/cm(2) of total fluence). This dose did not affect colorimetric or organoleptic characteristics of fruits. After immunomagnetic separation from raspberries, oocysts were bleached and administered orally to neonatal suckling mice. Seven days after infection, mice were euthanized, and the number of oocysts in the entire small intestine was individually assessed by immunofluorescence flow cytometry. Three of 12 and 12 of 12 inoculated mice that received 10 and 100 oocysts isolated from nonirradiated raspberries, respectively, were found infected. Four of 12 and 2 of 12 inoculated mice that received 10(3) and 10(4) oocysts from irradiated raspberries, respectively, were found infected. Oocyst counts were lower in animals inoculated with 10(3) and 10(4) oocysts from irradiated raspberries (92 ± 144 and 38 ± 82, respectively) than in animals infected with 100 oocysts from nonirradiated raspberries (35,785 ± 66,221, P = 0.008). PL irradiation achieved oocyst reductions of 2 and 3 log for an inoculum of 10(3) and 10(4) oocysts, respectively. The present pilot-scale evaluation suggests that PL is an effective mode of decontamination for raspberries and prompts further applicability studies in industrial contexts.
Journal Article
Hydro-mechanical behavior of two clayey soils in presence of household waste leachates
2022
BACKGROUND AND OBJECTIVES: In landfills, containment is provided by natural or artificial clayey materials known for their low permeability and for their pollutant retention capacity. However, the properties of these media are modified by leachates, whose migration they are supposed to limit. This study aims to reconsider the criteria for choosing suitable materials to make a bottom liner through both their long term hydraulic and mechanical performances. METHODS: Two fine materials sampled in Burkina Faso (West Africa) have been characterized in order to compare their hydro-mechanical behavior in the presence of household waste leachates. The first material is classified as an inorganic clay of low to medium plasticity according to Casagrande plasticity diagram, it is mainly kaolinitic with some traces amounts of smectites. The second one is classified clayey sand of low to medium plasticity, the predominant mineral clay being kaolinite. Hydro-mechanical tests were performed on both sampled materials to judge the sealing properties of these materials, as well as the characteristics of deformation and rupture which have an important effect to ensure the durability of a bottom liner. All these tests were performed first with distilled water then with leachates as interstitial fluids in order to understand the modification of the hydro-mechanical properties of the clayey soils. FINDINGS: Leachate contamination always alters hydraulic properties of the materials. However, between the two soils, the most clayey and the most impervious (soils from Nouna) undergo the deeper weathering. Indeed, hydraulic conductivity of these soils in contact with a synthetic leachate increases from 1.71x10-10 to 1.51x10-9 m/s. In contrast to soils from Boudry, these soils also undergo very significant settlements over the long term with compressibility indexes varying from 0.164 to 0.225. For both soils, the shear strength increases showing that, from this point view, the leachate work in the sense of of the bottom liner stability. For soils from Nouna, the effective cohesion increases from 3 to 21 kPa with a slight decrease of friction angle; for soils from Boudry a slight increase of cohesion is noticed while friction angle increases from 34 to 37°. CONCLUSION: This comparative study is of practical use to environmental geotechnics professionals because it shows that the choice in designing a bottom liner must be a compromise between long term hydraulic and mechanical behaviors of soils. It is also important to know the nature of the flows to contain in order to ensure the durability of the structure.
Journal Article