Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,595
result(s) for
"Lei, Shan"
Sort by:
In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy
by
Zhang, Jing
,
Blum, Nicholas Thomas
,
Lei, Shan
in
631/67/1059
,
692/700
,
Cascade chemical reactions
2022
Non-invasive visualization of dynamic molecular events in real-time via molecular imaging may enable the monitoring of cascade catalytic reactions in living systems, however effective imaging modalities and a robust catalytic reaction system are lacking. Here we utilize three-dimensional (3D) multispectral photoacoustic (PA) molecular imaging to monitor in vivo cascade catalytic therapy based on a dual enzyme-driven cyclic reaction platform. The system consists of a two-dimensional (2D) Pd-based nanozyme conjugated with glucose oxidase (GOx). The combination of nanozyme and GOx can induce the PA signal variation of endogenous molecules. Combined with the PA response of the nanozyme, we can simultaneously map the 3D PA signals of dynamic endogenous and exogenous molecules associated with the catalytic process, thus providing a real-time non-invasive visualization. We can also treat tumors under the navigation of the PA imaging. Therefore, our study demonstrates the imaging-guided potential of 3D multispectral PA imaging in feedback-looped cascade catalytic therapy.
Photoacoustic imaging can be used to monitor chemical reaction in cells and tissues. Here, the authors develop a Pd based nanozyme conjugated with glucose oxidase that can induce the change of photoacoustic signals during the catalytic cascade process, the system can also be used to treat tumor-bearing mice.
Journal Article
Never married individuals and homeownership in urban China
2023
Purpose
Drawing on the literature regarding gender, marital status and homeownership, this paper aims to examine the role of gender and marital status played in homeownership in urban China. This paper also attempted to shed light on other determinants of homeownership as well as heterogeneity in the factors related to homeownership between never married women and never married men.
Design/methodology/approach
This study uses data from the 2010 to 2015 China General Social Survey to investigate factors related to homeownership among urban Chinese households and focuses on the role of gender and marital status in particular. Multivariate analyses were applied to the full sample, never married sample, never married women sample and never married men sample respectively.
Findings
Findings from this study on the full sample showed that never married individuals were less likely to be the homeowners compared to the married couples. The probability of homeownership of never married women was lower compared to the never married men cohort. Different personal characteristics contributed to homeownership between never married women and never married men cohort.
Research limitations/implications
The empirical model in this study did not provide direct evidence that never married individuals were more likely to be homeowners as reflected in the recent mass media news. Further study could conduct a survey designed specifically for this group.
Originality/value
This study adds to current literature with further understanding of factors related to homeownership among Chinese households in general as well as in never married women and never married men subsamples.
Journal Article
Harnessing Artificial Intelligence to Revolutionize Microalgae Biotechnology: Unlocking Sustainable Solutions for High-Value Compounds and Carbon Neutrality
2025
Microalgae offer significant potential in diverse fields, including biofuels, carbon capture, and high-value bioproducts. However, optimizing and scaling microalgae cultivation systems present several challenges due to the dynamic interactions among environmental factors such as light intensity, temperature, pH, nutrient concentration, and CO2 levels, as well as species-specific biological variability. Recent advancements in artificial intelligence (AI), particularly machine learning (ML) and automation, have provided innovative solutions to these challenges. This review explored the role of AI in enhancing microalgae technology, focusing on optimizing cultivation conditions, improving CO2 capture, maximizing biomass production, and automating system processes. Key case studies highlight successful applications of AI in biofuel production, carbon capture projects, and high-value compound manufacturing. Key case studies demonstrate that AI-driven models can increase biomass productivity by up to 15–57%, improve CO2 biofixation efficiency, and enhance lipid and high-value compound yields by more than 20–43% compared to traditional methods. Additionally, we discussed the limitations of current AI models, particularly in data availability and species-specific variability, and suggested future research directions to enhance the integration of AI and microalgae systems. By leveraging AI’s potential, microalgae technologies can become more efficient, scalable, and economically viable, addressing global sustainability challenges such as energy production and climate change mitigation.
Journal Article
Hypertensive Rats Treated Chronically With Nω-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Disorder of Hepatic Fatty Acid Metabolism and Intestinal Pathophysiology
2020
N
-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension and liver injury. This study aimed at investigating the changes of liver lipometabonomics and exploring the underlying mechanisms of liver injury in the L-NAME-treated rats. The male Sprague-Dawley (SD) rats were treated with L-NAME (40 mg/kg, p.o.) for 8 weeks. After that, the liver, aorta, fecal, and serum were collected for analysis. The results showed that L-NAME induced hypertension and disordered the endothelial nitric oxide synthase (eNOS)-NO pathway in the treated rats. L-NAME could also increase the levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate transaminase (AST). The multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis showed that L-NAME could induce significant changes of the total hepatic lipids and most hepatic triglycerides, as well as fatty acid (FA). A positive correlation was found between the blood pressure and TAG. Immunofluorescence and Western-Blot experiments indicated that the L-NAME treatment significantly influenced some FA β-oxidation, desaturation, and synthesis-related proteins. The increase of intestinal inflammation, decrease of microcirculation and tight junction proteins, as well as alterations of microbial communities were observed in the L-NAME induced hypertensive rats, as well as alterations of microbial communities were notable correlation to TAG and FA species. This study demonstrated that the L-NAME-induced hypertensive rats exhibiting liver injury were the joint action of hepatic abnormal fatty acid metabolism and microcirculation disorder. Furthermore, the gut microflora, as well as the changes of FA β-oxidation (ACOX, CPT1α), desaturation (SCD-1), and synthesis (FAS) may be the potential mechanisms for abnormal fatty acid metabolism.
Journal Article
Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression
2022
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.
Journal Article
Visual dual chemodynamic/photothermal therapeutic nanoplatform based on superoxide dismutase plus Prussian blue
by
Chen, Jinxing
,
Ge, Xuewu
,
Lei, Shan
in
Atomic/Molecular Structure and Spectra
,
Biocompatibility
,
Biomedicine
2019
Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy. However, the poor stability and low membrane permeability of enzymes during the intracellular delivery are constraints for its practical applications. In this work, we synthesized novel near-infrared (NIR)-responsive core–shell-structured Prussian blue@fibrous SiO
2
(PBFS) nanoparticles as the carrier of superoxide dismutase (SOD) and a glutathione (GSH)-activated Fenton reagent (DiFe). The PBFS nanoparticles are further modified with a GSH-responsive cationic polymer (poly(2-(acryloyloxy)-N,N-dimethyl-N-(4-(((2-((2-(((4-methyl-2-oxo-2H-chromen-7-yl)carbamoyl)oxy)ethyl)disulfaneyl) ethoxy)carbonyl)amino)benzyl)ethan-1-aminium, PSS) containing disulfide bonds and fluorophores. After SOD and DiFe are loaded on the PBFS-PSS nanoparticles, dual chemodynamic/photothermal therapeutic nanoparticulate systems (PBFS-PSS/DiFe/SOD) are obtained.
In vitro
experiments show that PBFS-PSS/DiFe/SOD nanoparticles have good biocompatibility and can be tracked under fluorescence microscope during the intracellular delivery process in MCF-7 tumor cells due to the GSH-activated release of fluorophores. They also exhibit high efficiency in NIR photothermal conversion and GSH-activated Fenton reaction in tumor cells, thus achieving high-efficient killing effect of tumor cells based on the combination of photothermal and chemodynamic therapeutic performance (PTT and CDT). This work offers a novel pathway to construct a visual multifunctional nanomedicine platform for future cancer therapy.
Journal Article
Pancreatic stellate cell‐derived exosomal tRF‐19‐PNR8YPJZ promotes proliferation and mobility of pancreatic cancer through AXIN2
by
Dai, Shisi
,
Cao, Wenpeng
,
Long, Tingting
in
Axin Protein - genetics
,
Axin Protein - metabolism
,
AXIN2
2023
The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC‐derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC‐derived exosomal tDRs. ISH and qRT‐PCR were used to examine the tRF‐19‐PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF‐19‐PNR8YPJZ was determined using the CCK‐8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF‐19‐PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC‐derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC‐1 cells after treatment with PSC‐derived exosomes, such as tRF‐19‐PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF‐19‐PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF‐19‐PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF‐19‐PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF‐19‐PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.
Journal Article
Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy
by
Lei, Shan
,
Qu, Junle
,
He, Ting
in
Animals
,
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
,
Antineoplastic Combined Chemotherapy Protocols - pharmacology
2020
Manganese-based nanomaterials have piqued great interest in cancer nanotheranostics, owing to their excellent physicochemical properties. Here we report a facile wet-chemical synthesis of size-controllable, biodegradable, and metastable γ-phase manganese sulfide nanotheranostics, which is employed for tumor pH-responsive traceable gas therapy primed chemodynamic therapy (CDT), using bovine serum albumin (BSA) as a biological template (The final product was denoted as MnS@BSA). The as-prepared MnS@BSA can be degraded in response to the mildly acidic tumor microenvironment, releasing hydrogen sulfide (H
S) for gas therapy and manganese ions for magnetic resonance imaging (MRI) and CDT.
experiments validated the pH-responsiveness of MnS@BSA at pH 6.8 and both H
S gas and •OH radicals were detected during its degradation.
experiments showed efficiently tumor turn-on
-weighted MRI, significantly suppressed tumor growth and greatly prolonged survival of tumor-bearing mice following intravenous administration of MnS@BSA. Our findings indicated that MnS@BSA nanotheranostics hold great potential for traceable H
S gas therapy primed CDT of cancer.
Journal Article
Effects and Mechanisms of Dendrobium officinalis Six Nostrum for Treatment of Hyperuricemia with Hyperlipidemia
2020
Objectives. Hyperuricemia (HUA) is a disease caused by increased production of uric acid (UA) or reduced excretion of UA in the body. Results of an epidemiological survey show that 60% of patients with HUA have hyperlipidemia (HPA). Dendrobium officinalis (DOF) six nostrum (DOS) is based on the theory of traditional Chinese medicine for the transformation of the traditional Chinese nostrum Si Miao Wan. In this article, we aim to discuss the efficacy and mechanism of DOS in reducing UA and regulating lipid metabolism. The rat model of HUA with HPA was induced by potassium oxonate (PO) combined with high-fat sorghum feed. We monitored the serum UA and blood lipids. Liver xanthine oxidase (XOD), adenosine deaminase (ADA), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP1) activities were measured by enzyme-linked immunosorbent assay (ELISA) after the last administration of DOS. We performed a histopathological examination of rat kidney and intestine. Immunohistochemistry (IHC) was used to detect the expression of renal inflammatory proteins NLRP3 / Caspase-1 and intestinal inflammatory proteins TLR4 / NLRP3. We used western blot for measurement of liver hypoxanthine-guanine phosphoribosyl transferase (HPRT1) protein expression and renal PDZ domain protein kidney 1 (PDZK1) protein expression. DOS administration significantly reduced serum UA, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) level, and improved liver steatosis in the model rat. At the same time, DOS treatment effectively inhibited liver XOD and ADA, increased the level of liver HPRT1, and reduced the production of UA. Additional studies had shown that DOS can restore normal UA excretion function in the intestine and kidney and regulated liver lipids metabolism. IHC and histopathological sections showed that DOS reduced the level of kidney, intestinal inflammatory body (NLRP3, Caspase-1, and TLR4), improved inflammation of the kidney and intestinal tract in rats. DOS is a promising drug that can effectively reduce serum UA and lipid level in the model rat. The mechanism of action may be related to inhibition of UA production, promotion of UA excretion, regulation of lipids metabolism, and anti-inflammatory response.
Journal Article
Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene
2023
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Journal Article