Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Item Type
      Item Type
      Clear All
      Item Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
24,075 result(s) for "Li, Dan"
Sort by:
Natural deep eutectic solvents in phytonutrient extraction and other applications
Natural deep eutectic solvents (NaDESs) are considered a new type of green solvent with attractive application prospects in many fields because of their simple preparation, low cost, environmental friendliness, low volatility, high solvency capacity, designable structure, and easy biodegradability. Due to their biocompatibility, they are safe to use and are particularly suitable for natural product applications. In recent years, NaDESs have been used to extract phytonutrients (e.g., flavonoids, saponins, polysaccharides, alkaloids, quinones, phenolic acids, volatile oils, etc.) to improve their solubility, stability, and bioavailability. This review is intended to summarize and discuss recent progress in the field of natural products related to materials and preparation methods, physicochemical properties, enhancing extraction and separation, increasing solubility, improving stability and bioavailability, facilitating oral absorption of phytonutrients, and finally, highlighting the challenge for future work.
Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection
Population growth and industrial development have exacerbated environmental pollution of both land and aquatic environments with toxic and harmful materials. Luminescence-based chemical sensors crafted for specific hazardous substances operate on host-guest interactions, leading to the detection of target molecules down to the nanomolar range. Particularly, the luminescence-based sensors constructed on the basis of metal-organic frameworks (MOFs) are of increasing interest, as they can not only compensate for the shortcomings of traditional detection techniques, but also can provide more sensitive detection for analytes. Recent years have seen MOFs-based fluorescent sensors show outstanding advantages in the field of hazardous substance identification and detection. Here, we critically discuss the application of MOFs for the detection of a broad scope of hazardous substances, including hazardous gases, heavy metal ions, radioactive ions, antibiotics, pesticides, nitro-explosives, and some harmful solvents as well as luminous and sensing mechanisms of MOF-based fluorescent sensors. The outlook and several crucial issues of this area are also discussed, with the expectation that it may help arouse widespread attention on exploring fluorescent MOFs (LMOFs) in potential sensing applications.
CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation
Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma. Neuroblastoma cell differentiation is regulated by Id proteins. Here, the authors show that CaMKII-mediated phosphorylation of Beclin 1 can activate K63-linked ubiquitination and autophagic degradation of Id proteins uncovering a role for autophagy in cell differentiation.
Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases
Amyloid proteins, which are considered ‘villains’ in many neurodegenerative diseases, form enigmatic pathological strains that underlie disease pathogenesis and progression. Recent technical advances in cryogenic electron microscopy and solid-state NMR spectroscopy have enabled the high-resolution structures of full-length amyloid fibrils to be determined, initiating an era in which we have the opportunity to gain atomic-level structural understanding of pathogenic protein aggregation in neurodegenerative diseases. In this Review, we aim to explain the clinicopathological heterogeneity of neurodegenerative diseases by considering the polymorphic structures of amyloid fibrils. We decipher the structural basis for the generation of fibril polymorphs, how the fibril polymorphs differ in different disease contexts and how conformational changes alter the pathology caused by amyloid proteins during disease progression. Finally, we evaluate how this knowledge might aid clinical diagnostic and therapeutic strategies to treat neurodegenerative diseases.Pathological forms of amyloid proteins, such as tau and α-synuclein, are thought to drive neurodegeneration. Li and Liu describe how techniques that reveal high-resolution protein structures can provide insight into polymorphic amyloid fibril formation and the relationships between amyloid protein conformation and disease.
Meta-Analysis of Randomized Controlled Trials on the Efficacy and Safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the Treatment of Alzheimer’s Disease
To study the impact of donepezil, rivastigmine, galantamine, and memantine on cognitive, functional, behavioral, global changes and adverse effects in patients with mild, moderate and severe Alzheimer's disease (AD), we screened the literature published before September 2017 in the Pubmed, Embase, Cochrane library and Web of Science Electronic databases according to the inclusion criteria. Thirty-six studies were finally determined from 1560 preliminary screened articles. The AD Assessment Scale-cognitive Subscale (ADAS-cog), AD Cooperative Study-Activities of Daily Living (ADCS-ADL), Neuropsychiatric Inventory (NPI), and Clinician's Interview-Based Impression of Change Plus Caregiver Input scale (CIBIC+) were used as valid endpoints. Of the 36 trials included, meta-analyses of these placebo-control trials showed that there were significant differences between the donepezil, rivastigmine and placebo groups using ADAS-cog, ADCS-ADL, and CIBIC+. Meta-analyses of these placebo-controlled trials showed that there were significant differences between the galantamine and placebo groups using ADAS-cog, ADCS-ADL, NPI, and CIBIC+. These observations suggest that memantine is beneficial for stabilizing or slowing the decline in ADAS-cog and ADCS-ADL changes in AD patients. However, there was no significant effect according to the ADCS-ADL , NPI, and CIBIC+ tests, which indicated that memantine treatment has no significant effect on these cognitive aspects of AD patients. Different effects of donepezil, rivastigmine, galantamine, or memantine on AD were found in this study. According to the results, we conclude that galantamine is effective in treating all aspects of AD and is the first choice for the treatment of AD. However, due to limited data, we should consider additional data to obtain more stable results.
FOXP3 + regulatory T cells and their functional regulation
FOXP3+ regulatory T (Treg) cells are critical in maintaining immune tolerance and homeostasis of the immune system. The molecular mechanisms underlying the stability, plasticity and functional activity of Treg cells have been much studied in recent years. Here, we summarize these intriguing findings, and provide insight into their potential use or manipulation during Treg cell therapy for the treatment of autoimmune diseases, graft-versus-host disease (GVHD) and cancer.
Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease
Amyloid aggregation, which disrupts protein homeostasis, is a common pathological event occurring in human neurodegenerative diseases (NDs). Numerous evidences have shown that the structural diversity, so-called polymorphism, is decisive to the amyloid pathology and is closely associated with the onset, progression, and phenotype of ND. But how could one protein form so many stable structures? Recently, atomic structural evidence has been rapidly mounting to depict the involvement of chemical modifications in the amyloid fibril formation. In this Perspective, we aim to present a hierarchical regulation of chemical modifications including covalent post-translational modifications (PTMs) and noncovalent cofactor binding in governing the polymorphic amyloid formation, based mainly on the latest α-synuclein and Tau fibril structures. We hope to emphasize the determinant role of chemical modifications in amyloid assembly and pathology and to evoke chemical biological approaches to lead the fundamental and therapeutic research on protein amyloid state and the associated NDs. This Perspective summarizes the recent advances in the structural diversity of amyloid fibrils and discusses the roles of post-translational modifications and chemical cofactors in the conformational determination of fibril polymorphs.
PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum
Mutations in the proline-rich transmembrane protein 2 (PRRT2) are associated with paroxysmal kinesigenic dys- kinesia (PKD) and several other paroxysmal neurological diseases, but the PRRT2 function and pathogenic mecha- nisms remain largely obscure. Here we show that PRRT2 is a presynaptic protein that interacts with components of the SNARE complex and downregulates its formation. Loss-of-function mutant mice showed PKD-like phenotypes triggered by generalized seizures, hyperthermia, or optogenetic stimulation of the cerebellum. Mutant mice with spe- cific PRRT2 deletion in cerebellar granule cells (GCs) recapitulate the behavioral phenotypes seen in Prrt2-null mice. Furthermore, recording made in cerebellar slices showed that optogenetic stimulation of GCs results in transient elevation followed by suppression of Purkinje cell firing. The anticonvulsant drug carbamazepine used in PKD treat- ment also relieved PKD-like behaviors in mutant mice. Together, our findings identify PRRT2 as a novel regulator of the SNARE complex and provide a circuit mechanism underlying the PRRT2-related behaviors.
An appropriate ammonium: nitrate ratio promotes the growth of centipedegrass: insight from physiological and micromorphological analyses
Reasonable nitrogen fertilizer application is an important strategy to maintain optimal growth of grasslands, thereby enabling them to better fulfil their ecological functions while reducing environmental pollution caused by high nitrogen fertilizer production and application. Optimizing the a mmonium (NH 4 + ): n itrate (NO 3 - ) ratio is a common approach for growth promotion in crops and vegetables, but research on this topic in grass plants has not received sufficient attention. Centipedegrass, which is widely used in landscaping and ecological protection, was used as the experimental material. Different NH 4 + :NO 3 - ratios (0: 100, 25:75, 50:50, 75:25, 100:0) were used as the experimental treatments under hydroponic conditions. By monitoring the physiological and morphological changes under each treatment, the appropriate NH 4 + :NO 3 - ratio for growth and its underlying mechanism were determined. As the proportion of ammonium increased, the growth showed a “bell-shaped” response, with the maximum biomass and total carbon and nitrogen accumulation achieved with the NH 4 + :NO 3 - ratio of 50:50 treatment. Compared with the situation where nitrate was supplied alone, increasing the ammonium proportion increased the whole plant biomass by 93.2%, 139.7%, 59.0%, and 30.5%, the whole plant nitrogen accumulation by 44.9%, 94.6%, 32.8%, and 54.8%, and the whole plant carbon accumulation by 90.4%, 139.9%, 58.7%, and 26.6% in order. As a gateway for nitrogen input, the roots treated with an NH 4 + :NO 3 - ratio of 50:50 exhibited the highest ammonium and nitrate uptake rate, which may be related to the maximum total root length, root surface area, average root diameter, root volume, and largest root xylem vessel. As a gateway for carbon input, leaves treated with an NH 4 + :NO 3 - ratio of 50:50 exhibited the highest stomatal aperture, stomatal conductance, photosynthetic rate, transpiration rate, and photosynthetic products. The NH 4 + :NO 3 - ratio of 50:50 treatment had the largest stem xylem vessel area. This structure and force caused by transpiration may synergistically facilitate root-to-shoot nutrient translocation. Notably, the change in stomatal opening occurred in the early stage (4 hours) of the NH 4 + :NO 3 - ratio treatments, indicating that stomates are structures that are involved in the response to changes in the root NH 4 + :NO 3 - ratio. In summary, we recommend 50:50 as the appropriate NH 4 + :NO 3 - ratio for the growth of centipedegrass, which not only improves the nitrogen use efficiency but also enhances the carbon sequestration capacity.