Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
485 result(s) for "Li, Fengfeng"
Sort by:
Stem cell revolution: bridging the gap between research and clinical application
Stem cells are characterized by their capacity for self-renewal and their potential for multi-directional differentiation, enabling them to develop into various functional tissues and organs under specific conditions. Their applications hold considerable promise, and the market for stem cell products is progressively expanding. Internationally, several stem cell products have received approval for market release; however, in China, the field remains largely undeveloped, presenting substantial opportunities for growth. Recent years have witnessed significant advancements in stem cell research, driven by improvements in national policies, regulatory frameworks, and ongoing technological innovations. This progress has resulted in notable breakthroughs in basic science, as well as substantial advancements in clinical trials and industrial applications. Compared to previous decades, stem cell therapies in China have experienced remarkable progress, with numerous companies advancing to the clinical research phase, indicating a robust overall development trajectory. Nonetheless, the considerable variability in the sources, types, and preparation processes of stem cell products contributes to the complexity of their therapeutic mechanisms and in vivo activities, which are more intricate than those of traditional pharmaceuticals. Consequently, stem cell therapies encounter several challenges in drug development, including issues related to safety, induction efficiency, the exploration of clinical translation processes, and elevated research and development costs, all of which may hinder the advancement of stem cell therapies. Nevertheless, numerous companies and research institutions are actively engaged in promoting progress within the stem cell domain. It is anticipated that, as the stem cell sector continues to evolve, these challenges will be addressed, ultimately serving as a crucial catalyst for meeting various unmet clinical needs and effecting transformative changes in human healthcare and other sectors.
Predicting the potential global distribution of Ixodes pacificus under climate change
In order to predict the global potential distribution range of Ixodes pacificus ( I . pacificus ) under different climate scenario models in the future, analyze the major climate factors affecting its distribution, and provide references for the transformation of passive vector surveillance into active vector surveillance, the maximum entropy model (MaxEnt) was used in this study to estimate the global potential distribution range of I . pacificus under historical climate scenarios and different future climate scenarios. The global distribution data of I . pacificus were screened by ENMtools and ArcGIS 10.8 software, and a total of 563 distribution data of I . pacificus were obtained. Maxent 3.4.1 and R 4.0.3 were used to screen climate variables according to the contribution rate of environmental variables, knife cutting method and correlation analysis of variables. R 4.0.3 was used to calculate model regulation frequency doubling and feature combination to adjust MaxEnt parameters. The model results showed that the training omission rate was in good agreement with the theoretical omission rate, and the area under ROC curve (AUC) value of the model was 0.978. Among the included environmental variables, the Tmin2 (minimum temperature in February) and Prec1 (precipitation in January) contributed the most to the model, providing more effective information for the distribution of I . pacificus . MaxEnt model revealed that the distribution range of I . pacificus was dynamically changing. The main potential suitable areas are distributed in North America, South America, Europe, Oceania and Asia. Under the future climate scenario model, the potential suitable areas show a downward trend, but the countries and regions ieeeeeeenvolved in the suitable areas do not change much. Therefore, the invasion risk of the potential suitable area of I . pacificus should be paid attention to.
Derivatization of Lignin via Ternary Eutectic Solvent Systems for Enhanced Functionalities Hydrogel
This study presents a novel structural modification strategy for lignin, utilizing a ternary eutectic solvent system (TESS), which induces targeted derivatization. The resulting lignin-based functional hydrogel (LBFH), prepared via rational cross-linking of derivatized lignin precursors, exhibits exceptional hygroscopic properties, with a water swelling ratio of 934.0%. Water absorption kinetics were subjected to rigorous analysis through the employment of a dual-modeling strategy that incorporates Schott kinetics and Fickian diffusion mechanisms, thereby elucidating the synergistic dynamic processes underlying surface adsorption and matrix penetration. Remarkably, LBFH maintains 48.6% water retention capacity after 7 days atmospheric exposure (25 °C, 60% RH), demonstrating unprecedented environmental stability among biopolymer hydrogels. The engineered properties of LBFH suggest its potential application in sustainable agricultural practices as drought-resistant soil amendments, and in environmental remediation as contaminant-adsorptive matrices.
A nomogram with Ki-67 in the prediction of postoperative recurrence and death for glioma
This study examined to evaluate the predictive value of a nomogram with Ki-67 in overall and disease-free survival in glioma patients, a total of 76 patients diagnosed with glioma by pathology in Tengzhou Central People’s Hospital were enrolled. The baseline data and follow ups were retrospectively collected from medical records. The associations between Ki-67 and survival status were examined using log-rank test, univariate and multivariate Cox proportional hazard regression models. Calibrations were performed to validate the established nomograms. Ki-67 negative group showed of a longer OS survival time and a longer PFS survival time with log-rank test (x 2  = 16.101, P < 0.001 and x 2  = 16.961, P < 0.001). Age older than 50 years (HR = 2.074, 95% CI 1.097–3.923), abnormal treatment (HR = 2.932, 95% CI 1.343–6.403) and Ki-67 positive (HR = 2.722, 95% CI 1.097–6.755) were the independent predictive factors of death. High grade pathology (HR = 2.453, 95% CI 1.010–5.956) and Ki-67 positive (HR = 2.200, 95% CI 1.043–4.639) were the independent predictive factors of recurrence. The C-index for the nomogram of OS and PFS were 0.745 and 0.723, respectively. The calibration results showed that the nomogram could predict the overall and disease-free 1-year survival of glioma patients. In conclusion, the nomograms with Ki-67 as independent risk factor for OS and PFS could provide clinical consultation in the treatment and follow-up of malignant glioma.
Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice
Acquired heterotopic ossification (HO) is a painful and debilitating disease characterized by extraskeletal bone formation after injury. The exact pathogenesis of HO remains unknown. Here we show that TGF-β initiates and promotes HO in mice. We find that calcified cartilage and newly formed bone resorb osteoclasts after onset of HO, which leads to high levels of active TGF-β that recruit mesenchymal stromal/progenitor cells (MSPCs) in the HO microenvironment. Transgenic expression of active TGF-β in tendon induces spontaneous HO, whereas systemic injection of a TGF-β neutralizing antibody attenuates ectopic bone formation in traumatic and BMP-induced mouse HO models, and in a fibrodysplasia ossificans progressive mouse model. Moreover, inducible knockout of the TGF-β type II receptor in MSPCs inhibits HO progression in HO mouse models. Our study points toward elevated levels of active TGF-β as inducers and promoters of ectopic bone formation, and suggest that TGF-β might be a therapeutic target in HO. Heterotopic ossification (HO) is a painful disease of unknown etiology characterized by extraskeletal bone formation after injury. Here the authors show that TGF-β is increased in HO lesions, where it promotes the early stages of HO pathology, and demonstrate that TGF-β inhibition ameliorates HO in mice.
UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA
To explore the pathogenesis of Rhizoctonia solani and its phytotoxin phenylacetic acid (PAA) on maize leaves and sheaths, treated leaf and sheath tissues were analyzed and interpreted by ultra-performance liquid chromatography-mass spectrometry combined with chemometrics. The PAA treatment had similar effects to those of R. solani on maize leaves regarding the metabolism of traumatin, phytosphingosine, vitexin 2'' O-beta-D-glucoside, rutin and DIBOA-glucoside, which were up-regulated, while the synthesis of OPC-8:0 and 12-OPDA, precursors for the synthesis of jasmonic acid, a plant defense signaling molecule, was down-regulated under both treatments. However, there were also discrepancies in the influences exhibited by R. solani and PAA as the metabolic concentration of zeaxanthin diglucoside in the R. solani infected leaf group decreased. Conversely, in the PAA-treated leaf group, the synthesis of zeaxanthin diglucoside was enhanced. Moreover, although the synthesis of 12 metabolites were suppressed in both the R. solani- and PAA-treated leaf tissues, the inhibitory effect of R. solani was stronger than that of PAA. An increased expression of quercitrin and quercetin 3-O-glucoside was observed in maize sheaths treated by R. solani, while their concentrations were not changed significantly in the PAA-treated sheaths. Furthermore, a significant decrease in the concentration of L-Glutamate, which plays important roles in plant resistance to necrotrophic pathogens, only occurred in the R. solani-treated sheath tissues. The differentiated metabolite levels may be the partial reason of why maize sheaths were more susceptible to R. solani than leaves and may explain the underlying mechanisms of R. solani pathogenesis.
Characteristics of High Flow Zones and a Balanced Development Strategy of a Thick Bioclastic Limestone Reservoir in the Mishrif Formation in X Oilfield, Iraq
The Mishrif Formation in X Oilfield in Iraq is heterogeneous and has prominent development contradictions, and the development plan required urgent adjustment. Based on data regarding the core, cast thin sections, physical property, mercury injection experiments, and development performance, the main geological factors causing the unbalanced development of the Mishrif Formation are identified, and the corresponding development strategy is proposed. The results show that the High Flow Zones (HFZs) are the main geological factors causing unbalanced production in the thick bioclastic limestone reservoir. There are three kinds of HFZs in MA, MB1, and MB2 intervals, namely, the point shoal type, the tidal channel type, and the platform margin shoal type. All HFZs have different scales and distribution patterns. HFZs have ultra-high permeability and large permeability differences with the surrounding reservoir. During development, the oil mainly comes from HFZs, and the considerable reserves in the low permeability reservoir surrounding the HFZs are difficult to develop. The size of the pore throat of the HFZs greatly varies, and permeability is mainly dominated by the mega-pore throat (>10 μm) and the macro-pore throat (2.5~10 μm). In water flood development, the injected water rapidly advances along the mega-pore throat and the macro-pore throat, and the oil in the micro-pore or medium-pore throats are difficult to be displace. It can be concluded that the Mishrif Formation is vertically heterogeneous. The connectivity of HFZs in different intervals greatly varies. As a result, the Mishrif Formation is divided into three development units, MA, MB1, and MB2 + MC, and production wells are deployed in HFZs. The MA adopts a reverse nine-point injection-production pattern, for which the well spacing is 900 m using a vertical well, and the injection well should avoid the HFZs near the faults. The MB1 adopts an irregular five-point injection-production pattern using a vertical well, and the injection wells are deployed at the edge of the tidal channel or in the lagoon. MB2_1 deploys horizontal production wells, for which the well spacing is 900 m. Horizontal production wells, for which the well spacing is 300 m, are deployed in the lower MB2, and the lateral horizontal production wells are converted into injection wells after water breakthrough, and the horizontal wells deployed in the lower part of MC should moderately inject water.
Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol
Ag3PO4/g-C3N4 heterojunctions, with different g-C3N4 dosages, were synthesized using an in situ deposition method, and the photocatalytic performance of g-C3N4/Ag3PO4 heterojunctions was studied under simulated sunlight conditions. The results revealed that Ag3PO4/g-C3N4 exhibited excellent photocatalytic degradation activity for rhodamine B (Rh B) and phenol under the same light conditions. When the dosage of g-C3N4 was 30%, the degradation rate of Rh B at 9 min and phenol at 30 min was found to be 99.4% and 97.3%, respectively. After five cycles of the degradation experiment for Rh B, g-C3N4/Ag3PO4 still demonstrated stable photodegradation characteristics. The significant improvement in the photocatalytic activity and stability of g-C3N4/Ag3PO4 was attributed to the rapid charge separation between g-C3N4 and Ag3PO4 during the Z-scheme charge transfer and recombination process.
Burn-induced heterotopic ossification from incidence to therapy: key signaling pathways underlying ectopic bone formation
Burn injury is one of the potential causes of heterotopic ossification (HO), which is a rare but debilitating condition. The incidence ranges from 3.5 to 5.6 depending on body area. Burns that cover a larger percentage of the total body surface area (TBSA), require skin graft surgeries, or necessitate pulmonary intensive care are well-researched risk factors for HO. Since burns initiate such complex pathophysiological processes with a variety of molecular signal changes, it is essential to focus on HO in the specific context of burn injury to define best practices for its treatment. There are numerous key players in the pathways of burn-induced HO, including neutrophils, monocytes, transforming growth factor-β1-expressing macrophages and the adaptive immune system. The increased inflammation associated with burn injuries is also associated with pathway activation. Neurological and calcium-related contributions are also known. Endothelial-to-mesenchymal transition (EMT) and vascularization are known to play key roles in burn-induced HO, with hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) as potential initiators. Currently, non-steroidal anti-inflammatory drugs (NSAIDs) and radiotherapy are effective prophylaxes for HO. Limited joint motion, ankylosis and intolerable pain caused by burn-induced HO can be effectively tackled via surgery. Effective biomarkers for monitoring burn-induced HO occurrence and bio-prophylactic and bio-therapeutic strategies should be actively developed in the future.
Dynamic activation catalysts for CO2 hydrogenation
In typical heterogeneous catalytic reactions, catalysts, whether fixed or flowing, maintained their bulk and surface structures as stable as possible. We report here dynamic activation catalysts having continuously generate highly active sites in working, which enables a usually low active Cu/Al 2 O 3 catalyst for CO 2 hydrogenation, showing extraordinary catalytic performances. Using reaction streams in unusually high linear speed to blow and carry the Cu/Al 2 O 3 particulates to collide cyclically with a rigid target, the CO 2 conversion rate is more than three times enhanced at methanol selectivity promoted to 95% from less than 40% and the methanol space-time-yield is six times increased. By experimental and theoretical investigation, the dynamic activation of Cu/Al 2 O 3 is defined as a discrete condensed state with a distorted and elongated lattice, reduced coordination, and abnormal catalytic properties. We envision that continuous research on the dynamical activation catalysts will advance novel methods for promoting catalytic performance and discovering new catalytic reactions. CO₂ hydrogenation on Cu/Al₂O₃ is limited by low activity. Herein, high-velocity gas collisions create transient distorted Cu sites, tripling CO₂ conversion, boosting methanol selectivity to 95 % and increasing the space-time-yield six times.