Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,956 result(s) for "Li, Xiaoying"
Sort by:
PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms
Poly (ADP‐ribose) polymerase (PARP) inhibitors have provided great clinical benefits to ovarian cancer patients. To date, three PARP inhibitors, namely, olaparib, rucaparib and niraparib have been approved for the treatment of ovarian cancer in the United States. Homologous recombination deficiency (HRD) and platinum sensitivity are prospective biomarkers for predicting the response to PARP inhibitors in ovarian cancers. Preclinical data have focused on identifying the gene aberrations that might generate HRD and induce sensitivity to PARP inhibitors in vitro in cancer cell lines or in vivo in patient‐derived xenografts. Clinical trials have focused on genomic scar analysis to identify biomarkers for predicting the response to PARP inhibitors. Additionally, researchers have aimed to investigate mechanisms of resistance to PARP inhibitors and strategies to overcome this resistance. Combining PARP inhibitors with HR pathway inhibitors to extend the utility of PARP inhibitors to BRCA‐proficient tumours is increasingly foreseeable. Identifying the population of patients with the greatest potential benefit from PARP inhibitor therapy and the circumstances under which patients are no longer suited for PARP inhibitor therapy are important. Further studies are required in order to propose better strategies for overcoming resistance to PARP inhibitor therapy in ovarian cancers.
Identification and validation of stemness-related lncRNA prognostic signature for breast cancer
Background Long noncoding RNAs (lncRNAs) are emerging as crucial contributors to the development of breast cancer and are involved in the stemness regulation of breast cancer stem cells (BCSCs). LncRNAs are closely associated with the prognosis of breast cancer patients. It is critical to identify BCSC-related lncRNAs with prognostic value in breast cancer. Methods A co-expression network of BCSC-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA) was constructed. Univariate and multivariate Cox proportional hazards analyses were used to identify a stemness risk model with prognostic value. Kaplan–Meier analysis, univariate and multivariate Cox regression analyses and receiver operating characteristic (ROC) curve analysis were performed to validate the risk model. Principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation were conducted to analyze the risk model. Results In this study, BCSC-related lncRNAs in breast cancer were identified. We evaluated the prognostic value of these BCSC-related lncRNAs and eventually obtained a prognostic risk model consisting of 12 BCSC-related lncRNAs (Z68871.1, LINC00578, AC097639.1, AP003119.3, AP001207.3, LINC00668, AL122010.1, AC245297.3, LINC01871, AP000851.2, AC022509.2 and SEMA3B-AS1). The risk model was further verified as a novel independent prognostic factor for breast cancer patients based on the calculated risk score. Moreover, based on the risk model, the low- risk and high-risk groups displayed different stemness statuses. Conclusions These findings suggested that the 12 BCSC-related lncRNA signature might be a promising prognostic factor for breast cancer and can promote the management of BCSC-related therapy in clinical practice.
Prediction of disease-related miRNAs by voting with multiple classifiers
There is strong evidence to support that mutations and dysregulation of miRNAs are associated with a variety of diseases, including cancer. However, the experimental methods used to identify disease-related miRNAs are expensive and time-consuming. Effective computational approaches to identify disease-related miRNAs are in high demand and would aid in the detection of lncRNA biomarkers for disease diagnosis, treatment, and prevention. In this study, we develop an ensemble learning framework to reveal the potential associations between miRNAs and diseases (ELMDA). The ELMDA framework does not rely on the known associations when calculating miRNA and disease similarities and uses multi-classifiers voting to predict disease-related miRNAs. As a result, the average AUC of the ELMDA framework was 0.9229 for the HMDD v2.0 database in a fivefold cross-validation. All potential associations in the HMDD V2.0 database were predicted, and 90% of the top 50 results were verified with the updated HMDD V3.2 database. The ELMDA framework was implemented to investigate gastric neoplasms, prostate neoplasms and colon neoplasms, and 100%, 94%, and 90%, respectively, of the top 50 potential miRNAs were validated by the HMDD V3.2 database. Moreover, the ELMDA framework can predict isolated disease-related miRNAs. In conclusion, ELMDA appears to be a reliable method to uncover disease-associated miRNAs.
Capacity limits of spatially multiplexed free-space communication
Limits of orbital-angular-momentum multiplexing for free-space optical communication are revealed. Increasing the information capacity per unit bandwidth has been a perennial goal of scientists and engineers 1 . Multiplexing of independent degrees of freedom, such as wavelength, polarization and more recently space, has been a preferred method to increase capacity 2 , 3 in both radiofrequency and optical communication. Orbital angular momentum, a physical property of electromagnetic waves discovered recently 4 , has been proposed as a new degree of freedom for multiplexing to achieve capacity beyond conventional multiplexing techniques 5 , 6 , 7 , 8 , 9 , and has generated widespread and significant interest in the scientific community 10 , 11 , 12 , 13 , 14 . However, the capacity of orbital angular momentum multiplexing has not been established or compared to other multiplexing techniques. Here, we show that orbital angular momentum multiplexing is not an optimal technique for realizing the capacity limits of a free-space communication channel 15 , 16 , 17 and is outperformed by both conventional line-of-sight multi-input multi-output transmission and spatial-mode multiplexing.
Mitophagy in Hypertensive Cardiac Hypertrophy: Mechanisms and Therapeutic Implications
ABSTRACT Hypertensive cardiac hypertrophy (HCH) is a compensatory response to chronic pressure overload, ultimately progressing to heart failure if left unmanaged. Emerging evidence highlights the critical role of mitochondrial dysfunction in HCH pathogenesis, with impaired mitophagy—a selective autophagic process that removes damaged mitochondria—contributing to cardiomyocyte death, oxidative stress, and fibrosis. Protective mitophagy eliminates damaged mitochondria, averting reactive oxygen species (ROS)/calcium overload in HCH. Conversely, its dysregulation—either insufficient clearance or excessive removal—exacerbates mitochondrial dysfunction, driving pathological hypertrophy, fibrosis, and bioenergetic crisis. This dual nature presents a therapeutic paradox demanding contextual modulation. This review comprehensively examines the molecular mechanisms underlying mitophagy dysregulation in HCH, focusing on key pathways such as PINK1/Parkin, BNIP3/NIX, and FUNDC1. We also discuss the interplay between mitophagy and other cellular processes, including mitochondrial biogenesis, inflammasome activation, and metabolic remodeling. Furthermore, we explore potential therapeutic strategies targeting mitophagy to ameliorate HCH, including pharmacological agents, lifestyle interventions, and gene therapy approaches. Understanding the dual role of mitophagy in HCH—both protective and detrimental—may pave the way for novel precision medicine strategies in cardiovascular disease.
The role of ubiquitination and deubiquitination in tumor invasion and metastasis
Ubiquitination is vital for multiple cellular processes via dynamic modulation of proteins related to cell growth, proliferation, and survival. Of the ubiquitination system components, E3 ubiquitin ligases and deubiquitinases have the most prominent roles in modulating tumor metastasis. This review will briefly summarize the observations and underlying mechanisms of multiple E3 ubiquitin ligases and deubiquitinases to regulate tumor metastasis. Further, we will discuss the relationship and importance between ubiquitination components and tumor progression.
The cGAS/STING Pathway: A Novel Target for Cancer Therapy
As a DNA receptor, cyclic GMP-AMP synthase (cGAS) plays a crucial role in the immune system by recognizing abnormal DNA in the cytoplasm and activating the stimulator of interferon genes (STING) signaling pathway. This signaling cascade reaction leads to an immune response produced by type I interferon and other immune mediators. Recent advances in research have enhanced our current understanding of the potential role of the cGAS/STING pathway in anticancer therapy; however, in some cases, chronic STING activation may promote tumorigenesis. The present review article discusses the biological mechanisms of the cGAS/STING pathway, its dichotomous role in tumors, and the latest advances with respect to STING agonists and antagonists.
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases
Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including cancers. Here we demonstrate that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are stable, reproducible, and consistent among individuals of the same species. Employing Solexa, we sequenced all serum miRNAs of healthy Chinese subjects and found over 100 and 91 serum miRNAs in male and female subjects, respectively. We also identified specific expression patterns of serum miRNAs for lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Two non-small cell lung cancer-specific serum miRNAs obtained by Solexa were further validated in an independent trial of 75 healthy donors and 152 cancer patients, using quantitative reverse transcription polymerase chain reaction assays. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.
Can working in agriculture have a favorable effect on depressive symptoms? Life satisfaction as a mediator
Several studies have explored the relationship between various aspects of work and the onset of depressive symptoms. However, there is a lack of research focusing on the association between job types and depressive symptoms. This study aims to investigate the impact of agricultural work on depressive symptoms and whether life satisfaction mediates this relationship. Data were obtained from the 2015 China Health and Retirement Longitudinal Study (CHARLS) (n = 6856). Participants were categorized based on whether they were engaged in agricultural or non-agricultural work and further classified as self-employed or employed. Depressive symptoms and life satisfaction were assessed using the CES-D and SWLS scales. Logistic regression analysis was used to examine associations, and Baron and Kenny's mediation test and the Sobel test were used to assess the mediating effect of life satisfaction. Engaging in agricultural work was positively associated with increased depressive symptoms scores (B = 3.437, p < 0.001), indicating that agricultural work exacerbates depressive symptoms. This effect was partially mediated by life satisfaction. Self-employed agricultural workers are a high-risk group for depressive symptoms. Additionally, life satisfaction plays a mediating role between type of job and depressive symptoms. Public health recommendations aimed at improving or mitigating depressive symptoms among agricultural workers could focus on enhancing life satisfaction to promote healthier psychological status.
Visual-SLAM Classical Framework and Key Techniques: A Review
With the significant increase in demand for artificial intelligence, environmental map reconstruction has become a research hotspot for obstacle avoidance navigation, unmanned operations, and virtual reality. The quality of the map plays a vital role in positioning, path planning, and obstacle avoidance. This review starts with the development of SLAM (Simultaneous Localization and Mapping) and proceeds to a review of V-SLAM (Visual-SLAM) from its proposal to the present, with a summary of its historical milestones. In this context, the five parts of the classic V-SLAM framework—visual sensor, visual odometer, backend optimization, loop detection, and mapping—are explained separately. Meanwhile, the details of the latest methods are shown; VI-SLAM (Visual inertial SLAM) is reviewed and extended. The four critical techniques of V-SLAM and its technical difficulties are summarized as feature detection and matching, selection of keyframes, uncertainty technology, and expression of maps. Finally, the development direction and needs of the V-SLAM field are proposed.