Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
668 result(s) for "Li, Yongfu"
Sort by:
Optical fiber sensors for high-temperature monitoring: a review
High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interference, remote detection, multiplexing, and distributed measurement advantages. This paper reviews the sensing principle, structural design, and temperature measurement performance of fiber-optic high-temperature sensors, as well as recent significant progress in the transition of sensing solutions from glass to crystal fiber. Finally, future prospects and challenges in developing fiber-optic high-temperature sensors are also discussed.
Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review
PurposeForests play a critical role in terrestrial ecosystem carbon cycling and the mitigation of global climate change. Intensive forest management and global climate change have had negative impacts on the quality of forest soils via soil acidification, reduction of soil organic carbon content, deterioration of soil biological properties, and reduction of soil biodiversity. The role of biochar in improving soil properties and the mitigation of greenhouse gas (GHG) emissions has been extensively documented in agricultural soils, while the effect of biochar application on forest soils remains poorly understood. Here, we review and summarize the available literature on the effects of biochar on soil properties and GHG emissions in forest soils.Materials and methodsThis review focuses on (1) the effect of biochar application on soil physical, chemical, and microbial properties in forest ecosystems; (2) the effect of biochar application on soil GHG emissions in forest ecosystems; and (3) knowledge gaps concerning the effect of biochar application on biogeochemical and ecological processes in forest soils.Results and discussionBiochar application to forests generally increases soil porosity, soil moisture retention, and aggregate stability while reducing soil bulk density. In addition, it typically enhances soil chemical properties including pH, organic carbon stock, cation exchange capacity, and the concentration of available phosphorous and potassium. Further, biochar application alters microbial community structure in forest soils, while the increase of soil microbial biomass is only a short-term effect of biochar application. Biochar effects on GHG emissions have been shown to be variable as reflected in significantly decreasing soil N2O emissions, increasing soil CH4 uptake, and complex (negative, positive, or negligible) changes of soil CO2 emissions. Moreover, all of the aforementioned effects are biochar-, soil-, and plant-specific.ConclusionsThe application of biochars to forest soils generally results in the improvement of soil physical, chemical, and microbial properties while also mitigating soil GHG emissions. Therefore, we propose that the application of biochar in forest soils has considerable advantages, and this is especially true for plantation soils with low fertility.
The application and prospect of CDK4/6 inhibitors in malignant solid tumors
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, which block the transition from the G1 to S phase of the cell cycle by interfering with Rb phosphorylation and E2F release, have shown potent antitumor activity and manageable toxicity in HR+/HER2− breast cancer patients. Some clinical trials involving CDK4/6 inhibitors in other tumors have achieved preliminary impressive efficacy. Whether CDK4/6 inhibitors possess great potential as broad-spectrum antitumor drugs and how to maximize their clinical benefits remain uncertain. TCGA database analysis showed that CDK4/6 genes and related genes are widely expressed among various tumors, and high or moderate expression of CDK4/6 genes commonly indicates poor survival. CDK4/6 gene expression is significantly higher in COAD, ESCA, STAD, LIHC, and HNSC, suggesting that CDK4/6 inhibitors could be more efficacious in those tumors. Moreover, network analysis with the STRING database demonstrated that CDK4/6-related proteins were co-expressed or co-occurred with the classical tumor signaling pathways, such as the cell cycle pathway, RAS pathway, PI3K pathway, Myc pathway, and p53 pathway. The extensive antitumor effects of CDK4/6 inhibitors may be achieved by synergizing or antagonizing with other signaling molecule inhibitors, and combination therapy might be the most effective treatment strategy. This article analyzed the feasibility of expanding the application of CDK4/6 inhibitors at the genetic level and further summarized the associated clinical/preclinical studies to collect supportive evidence. This is the first study that presents a theoretical foundation for CDK4/6 inhibitor precision therapy via combined analysis of comprehensive gene information and clinical research results.
Underwater Hyperspectral Imaging Technology and Its Applications for Detecting and Mapping the Seafloor: A Review
Common methods of ocean remote sensing and seafloor surveying are mainly carried out by airborne and spaceborne hyperspectral imagers. However, the water column hinders the propagation of sunlight to deeper areas, thus limiting the scope of observation. As an emerging technology, underwater hyperspectral imaging (UHI) is an extension of hyperspectral imaging technology in air conditions, and is undergoing rapid development for applications in shallow and deep-sea environments. It is a close-range, high-resolution approach for detecting and mapping the seafloor. In this paper, we focus on the concepts of UHI technology, covering imaging systems and the correction methods of eliminating the water column’s influence. The current applications of UHI, such as deep-sea mineral exploration, benthic habitat mapping, and underwater archaeology, are highlighted to show the potential of this technology. This review can provide an introduction and overview for those working in the field and offer a reference for those searching for literature on UHI technology.
Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest
Forest soils play an important role in controlling global warming by reducing atmospheric methane (CH 4 ) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH 4 cycle or CH 4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha −1  yr −1 ) on soil CH 4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo ( Phyllostachys edulis ) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH 4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH 4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
Arithmetic Optimization AOMDV Routing Protocol for FANETs
Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have the characteristics of faster network topology changes and limited energy. Existing reactive routing protocols are unsuitable for the highly dynamic and limited energy of FANETs. For the lithium battery-powered UAV, flight endurance lasts from half an hour to two hours. The fast-moving UAV not only affects the packet delivery rate, average throughput, and end-to-end delay but also shortens the flight endurance. Therefore, research is urgently needed into a high-performance routing protocol with high energy efficiency. In this paper, we propose a novel routing protocol called AO-AOMDV, which utilizes arithmetic optimization (AO) to enhance the ad hoc on-demand multi-path distance vector (AOMDV) routing protocol. The AO-AOMDV utilizes a fitness function to calculate the fitness value of multiple paths and employs arithmetic optimization for selecting the optimal route for routing selection. Our experiments were conducted using NS3 with three evaluation metrics: the packet delivery ratio, network lifetime, and average end-to-end delay. We compare this algorithm to routing protocols including AOMDV and AODV. The results indicate that the proposed AO-AOMDV attained a higher packet delivery ratio, network lifetime, and lower average end-to-end delay.
A Review of Point Set Registration: From Pairwise Registration to Groupwise Registration
This paper presents a comprehensive literature review on point set registration. The state-of-the-art modeling methods and algorithms for point set registration are discussed and summarized. Special attention is paid to methods for pairwise registration and groupwise registration. Some of the most prominent representative methods are selected to conduct qualitative and quantitative experiments. From the experiments we have conducted on 2D and 3D data, CPD-GL pairwise registration algorithm and JRMPC groupwise registration algorithm seem to outperform their rivals both in accuracy and computational complexity. Furthermore, future research directions and avenues in the area are identified.
Mitochondrial genome of Quercus chenii: genomic features and evolutionary implications
Recent advances in high-throughput sequencing have enabled detailed characterization of plant mitochondrial genomes. Here, we assembled and analyzed the mitochondrial genome of Quercus chenii Nakai, a key oak species in Fagaceae, using Illumina NovaSeq6000. The genome consists of a 364,958 bp linear and a 53,677 bp circular chromosome, totaling 418,635 bp with a GC content of 45.6%. Repeat-rich regions (210–250 and 300–340 kb) may facilitate structural rearrangements, while extensive RNA editing-particularly in nad4 and ccmF -likely enhances protein functionality and mitochondrial adaptability. Comparative collinearity analysis showed high structural conservation with Q. acutissima Carruth. (90.92%) but marked divergence from Fagus sylvatica L. (35.80%), suggesting lineage-specific rearrangements. Phylogenetic analysis based on the mitochondrial genome supports the same placement of Q. chenii within Fagaceae as that derived from the chloroplast genome. The Ka/Ks analysis across Fagaceae mitochondrial genomes revealed strong conservation of core genes, with adaptive variations in energy metabolism-related genes, suggesting functional divergence linked to metabolic optimization under environmental stress. These findings highlight the distinct evolutionary strategies of mitochondrial and chloroplast genomes: the former optimizing energy production, while the latter fine-tunes photosynthesis and stress responses. Comparison analysis with the chloroplast genome further revealed both conserved ( psbT and psbC ) and divergent ( ndhD and ndhF ) genes, implying potential historical gene transfer events. Together, these findings highlight the dynamic yet conserved nature of the Q . chenii mitochondrial genome and provide new insights into organellar genome evolution, structural plasticity, and adaptive mechanisms within the Fagaceae family.
Global property rights and land use efficiency
The study investigates the global impact of land property rights on land use efficiency (LUE), as measured by the key indicator for United Nations Sustainable Development Goal 11.3.1, namely Land Consumption Rate to Population Growth Rate. By utilizing human-land change data from 165 countries spanning the period between 1990 and 2020, we have developed a fixed effects model and employed legal origins as an instrumental variable to examine the influence of land property rights security on LUE. Our findings demonstrate that the security of land property rights significantly influences LUE, with common law countries exhibiting higher levels of LUE compared to civil law countries while controlling for other variables. Stability in property rights encourages long-term investments in infrastructure and sustainable land management practices, thereby enhancing land productivity and mitigating urban sprawl. Furthermore, safeguarding property rights limits governments’ power to expropriate lands, facilitating rational and efficient land transactions that contribute towards achieving Sustainable Development Goals. The study examines how land property rights impact land use efficiency (LUE) globally, based on the SDG 11.3.1 indicator. Secure rights improve LUE, with common law countries outperforming civil law countries, supporting sustainable land management.
Distributed MPC of vehicle platoons with guaranteed consensus and string stability
Control of vehicle platoon can effectively reduce the traffic accidents caused by fatigue driving and misoperation, reduce air resistance by eliminating the inter-vehicle gap which will effectively reduce fuel consumption and exhaust emissions. A hierarchical control scheme for vehicle platoons is proposed in this paper. Considering safety, consistency, and passengers’ comfort, a synchronous distributed model predictive controller is designed as an upper-level controller, in which a constraint guaranteeing string stability is introduced into the involved local optimization problem so as to guarantee that the inter-vehicle gap error gradually attenuates as it propagates downstream. A terminal equality constraint is added to guarantee asymptotic consensus of vehicle platoons. By constructing the vehicle inverse longitudinal dynamics model, a lower-level control scheme with feedforward and feedback controllers is designed to adjust the throttle angle and brake pressure of vehicles. A PID is used as the feedback controller to eliminate the influence of unmodeled dynamics and uncertainties. Finally, the performance of longitudinal tracking with the proposed control scheme is validated by joint simulations with PreScan, CarSim, and Simulink.