Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
42,947 result(s) for "Li, Yue"
Sort by:
Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome
Perfluoroalkyl substances (PFAS) are widely used in various manufacturing processes. Accumulation of these chemicals has adverse effects on human health, including inflammation in multiple organs, yet how PFAS are sensed by host cells, and how tissue inflammation eventually incurs, is still unclear. Here, we show that the double-stranded DNA receptor AIM2 is able to recognize perfluorooctane sulfonate (PFOS), a common form of PFAS, to trigger IL-1β secretion and pyroptosis. Mechanistically, PFOS activates the AIM2 inflammasome in a process involving mitochondrial DNA release through the Ca 2+ -PKC-NF-κB/JNK-BAX/BAK axis. Accordingly, Aim2 −/ − mice have reduced PFOS-induced inflammation, as well as tissue damage in the lungs, livers, and kidneys in both their basic condition and in an asthmatic exacerbation model. Our results thus suggest a function of AIM2 in PFOS-mediated tissue inflammation, and identify AIM2 as a major pattern recognition receptor in response to the environmental organic pollutants. The double-stranded DNA receptor AIM2 is able to sense the environmental pollutant perfluorooctane sulfonate, a prototypical perfluoro-alkyl substrate. Activation of the AIM2 pathway leads to inflammation and tissue damage via IL-1β secretion and pyroptosis of affected innate immune cells.
Association between obesity and bone mineral density in middle-aged adults
Background The relationship between obesity and bone mineral density (BMD) varies in different studies. Our aim in this study was to explore the association between obesity (body mass index ≥ 30) and BMD among adults 40–59 years of age. Methods This study was conducted on a sample of 2218 participants (986 men and 1232 women) aged 40 to 59 years from the National Health and Nutrition Examination Survey 2011–2018. The independent variable was body mass index (BMI). The outcome variable was lumbar BMD. The associations of BMI with lumbar BMD were examined using multivariable linear regression models. Results BMI was positively associated with lumbar BMD after adjusting for other covariates [ β 0.006; 95% confidence interval (CI) 0.003–0.008]. An inverted U-shaped association between BMI and lumbar BMD was further identified, with the point of infection at approximately 50 kg/m 2 . In the subgroup analyses, the relationship between BMI and lumbar BMD in women and blacks was an inverted U-shape. Conclusion Based on the results, it may be beneficial to appropriately increase BMI to promote BMD. However, considering the inverted U-shaped association, excessive BMI may be harmful to bone health in women and blacks.
Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis
Lung cancer is often diagnosed at an advanced stage and has a poor prognosis. Conventional treatments are not effective for metastatic lung cancer therapy. Although some of molecular targets have been identified with favorable response, those targets cannot be exploited due to the lack of suitable drug carriers. Lung cancer cell-derived exosomes (LCCDEs) receive recent interest in its role in carcinogenesis, diagnosis, therapy, and prognosis of lung cancer due to its biological functions and natural ability to carry donor cell biomolecules. LCCDEs can promote cell proliferation and metastasis, affect angiogenesis, modulate antitumor immune responses during lung cancer carcinogenesis, regulate drug resistance in lung cancer therapy, and be now considered an important component in liquid biopsy assessments for detecting lung cancer. Therapeutic deliverable exosomes are emerging as promising drug delivery agents specifically to tumor high precision medicine because of their natural intercellular communication role, excellent biocompatibility, low immunogenicity, low toxicity, long blood circulation ability, biodegradable characteristics, and their ability to cross various biological barriers. Several studies are currently underway to develop novel diagnostic and prognostic modalities using LCCDEs, and to develop methods of exploiting exosomes for use as efficient drug delivery vehicles. Current status of lung cancer and extensive applicability of LCCDEs are illustrated in this review. The promising data and technologies indicate that the approach on LCCDEs implies the potential application of LCCDEs to clinical management of lung cancer patients.
The effect of Clostridium butyricum on symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial
Irritable bowel syndrome (IBS) is a common disorder in gastrointestinal system and impairs the quality of life of the patients. Clostridium butyricum ( CB ) is a probiotics that has been used in several gastrointestinal diseases. The efficacy of CB in treating IBS is still unknown. This prospective, multi-centre, randomized, double-blind, placebo-controlled trial aimed to assess the efficacy and safety of CB in treating diarrhea-predominant IBS (IBS-D) and analyze the fecal microbiota after treatment. Two hundred patients with IBS-D were recruited and were given CB or placebo for 4 weeks. End points included change from baseline in IBS symptoms, quality of life, stool consistency and frequency. Compared with placebo, CB is effective in improving the overall IBS-D symptoms (−62.12 ± 74.00 vs. −40.74 ± 63.67, P  = 0.038) as well as quality of life (7.232 ± 14.06 vs. 3.159 ± 11.73, P  = 0.032) and stool frequency (−1.602 ± 1.416 vs. −1.086 ± 1.644, P  = 0.035). The responder rates are found higher in CB compared with the placebo (44.76% vs. 30.53%, P  = 0.042). The change in fecal microbiota was analyzed and function pathways of CB in treating IBS-D were predicted. In conclusion, CB improves overall symptoms, quality of life and stool frequency in IBS-D patients and is considered to be used as a probiotics in treating IBS-D clinically.
Notes on flat-space limit of AdS/CFT
A bstract Different frameworks exist to describe the flat-space limit of AdS/CFT, include momentum space, Mellin space, coordinate space, and partial-wave expansion. We explain the origin of momentum space as the smearing kernel in Poincare AdS, while the origin of latter three is the smearing kernel in global AdS. In Mellin space, we find a Mellin formula that unifies massless and massive flat-space limit, which can be transformed to coordinate space and partial-wave expansion. Furthermore, we also manage to transform momentum space to smearing kernel in global AdS, connecting all existed frameworks. Finally, we go beyond scalar and verify that VV O maps to photon-photon-massive amplitudes.
Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects
Plant–pathogen interactions induce a signal transmission series that stimulates the plant’s host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.