Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,141
result(s) for
"Lin, Chia Ching"
Sort by:
The Adverse Effects of Air Pollution on the Eye: A Review
by
Chiu, Chien-Chih
,
Chen, Kuo-Jen
,
Lee, Po-Yen
in
Air Pollutants - analysis
,
Air pollution
,
Air Pollution - adverse effects
2022
Air pollution is inevitably the result of human civilization, industrialization, and globalization. It is composed of a mixture of gases and particles at harmful levels. Particulate matter (PM), nitrogen oxides (NOx), and carbon dioxides (CO2) are mainly generated from vehicle emissions and fuel consumption and are the main materials causing outdoor air pollution. Exposure to polluted outdoor air has been proven to be harmful to human eyes. On the other hand, indoor air pollution from environmental tobacco smoking, heating, cooking, or poor indoor ventilation is also related to several eye diseases, including conjunctivitis, glaucoma, cataracts, and age-related macular degeneration (AMD). In the past 30 years, no updated review has provided an overview of the impact of air pollution on the eye. We reviewed reports on air pollution and eye diseases in the last three decades in the PubMed database, Medline databases, and Google Scholar and discussed the effect of various outdoor and indoor pollutants on human eyes.
Journal Article
Identification of diverse astrocyte populations and their malignant analogs
2017
The nature of astrocyte diversity in the adult brain has remained poorly defined. The authors identify five astrocyte subpopulations in the brain that exhibit extensive molecular and functional diversity. They uncover correlative populations in malignant glioma, providing insight into how diverse astrocyte populations contribute to synaptogenesis, tumor pathophysiology and neurological disease.
Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting–based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.
Journal Article
Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode
2022
Architected materials that actively respond to external stimuli hold tantalizing prospects for applications in energy storage, wearable electronics, and bioengineering. Molybdenum disulfide, an excellent two-dimensional building block, is a promising candidate for lithium-ion battery anode. However, the stacked and brittle two-dimensional layered structure limits its rate capability and electrochemical stability. Here we report the dewetting-induced manufacturing of two-dimensional molybdenum disulfide nanosheets into a three-dimensional foam with a structural hierarchy across seven orders of magnitude. Our molybdenum disulfide foam provides an interpenetrating network for efficient charge transport, rapid ion diffusion, and mechanically resilient and chemically stable support for electrochemical reactions. These features induce a pseudocapacitive energy storage mechanism involving molybdenum redox reactions, confirmed by in-situ X-ray absorption near edge structure. The extraordinary electrochemical performance of molybdenum disulfide foam outperforms most reported molybdenum disulfide-based Lithium-ion battery anodes and state-of-the-art materials. This work opens promising inroads for various applications where special properties arise from hierarchical architecture.
The stacked and brittle 2D layered structure of molybdenum disulphide limits its practical application in lithium ion batteries. Here, authors report a dewetting-induced manufacture strategy to create the interpenetrating network and induce the pseudocapacity to improve the electrochemical performance.
Journal Article
Manipulating magnetoelectric energy landscape in multiferroics
2020
Magnetoelectric coupling at room temperature in multiferroic materials, such as BiFeO
3
, is one of the leading candidates to develop low-power spintronics and emerging memory technologies. Although extensive research activity has been devoted recently to exploring the physical properties, especially focusing on ferroelectricity and antiferromagnetism in chemically modified BiFeO
3
, a concrete understanding of the magnetoelectric coupling is yet to be fulfilled. We have discovered that La substitutions at the Bi-site lead to a progressive increase in the degeneracy of the potential energy landscape of the BiFeO
3
system exemplified by a rotation of the polar axis away from the 〈111〉
pc
towards the 〈112〉
pc
discretion. This is accompanied by corresponding rotation of the antiferromagnetic axis as well, thus maintaining the right-handed vectorial relationship between ferroelectric polarization, antiferromagnetic vector and the Dzyaloshinskii-Moriya vector. As a consequence, La-BiFeO
3
films exhibit a magnetoelectric coupling that is distinctly different from the undoped BiFeO
3
films.
BiFeO
3
has a wide application but the impact of rare-earth substitution for the evolution of the coupling mechanism is unknown. Here, the authors reveal the correlation between ferroelectricity, antiferromagnetism, a weak ferromagnetic moment, and their switching pathways in La-substituted BiFeO
3
.
Journal Article
Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices
2024
As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO
3
and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO
3
, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO
3
. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.
The authors realize voltage-based magnetization switching and reading in nanodevices at room temperature, through exchange coupling between multiferroic BiFeO
3
and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.
Journal Article
Predicting financial trouble using call data—On social capital, phone logs, and financial trouble
2018
An ability to understand and predict financial wellbeing for individuals is of interest to economists, policy designers, financial institutions, and the individuals themselves. According to the Nilson reports, there were more than 3 billion credit cards in use in 2013, accounting for purchases exceeding US$ 2.2 trillion, and according to the Federal Reserve report, 39% of American households were carrying credit card debt from month to month. Prior literature has connected individual financial wellbeing with social capital. However, as yet, there is limited empirical evidence connecting social interaction behavior with financial outcomes. This work reports results from one of the largest known studies connecting financial outcomes and phone-based social behavior (180,000 individuals; 2 years' time frame; 82.2 million monthly bills, and 350 million call logs). Our methodology tackles highly imbalanced dataset, which is a pertinent problem with modelling credit risk behavior, and offers a novel hybrid method that yields improvements over, both, a traditional transaction data only approach, and an approach that uses only call data. The results pave way for better financial modelling of billions of unbanked and underbanked customers using non-traditional metrics like phone-based credit scoring.
Journal Article
PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis
2020
Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment
1
,
2
. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma
3
,
4
. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.
Glioblastoma tumours expressing oncogenic PIK3CA variants secrete the glycan GPC3, which promotes the formation of neural synapses, brain synaptic hyperexcitability and gliomagenesis.
Journal Article
Terminal uridyltransferase 7 regulates TLR4-triggered inflammation by controlling Regnase-1 mRNA uridylation and degradation
2021
Different levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3′ ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by
Zc3h12a
gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on
Zc3h12a
3′-UTR, thereby promotes
Zc3h12a
uridylation and degradation.
Zc3h12a
from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated
Zc3h12a
is significantly reduced in
Tut7
-/-
cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.
Terminal uridyltransferase 7 (TUT7) adds U-tails on diverse RNAs to promote degradation. Here the authors show that TUT7 is induced upon LPS treatment in macrophages and promotes decay of Regnase-1, thereby regulating the expression of a subset of cytokines, including IL-6.
Journal Article
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
2025
The search for van der Waals (vdW) multiferroic materials has been challenging but also holds great potential for the next-generation multifunctional nanoelectronics. The group-IV monochalcogenide, with an anisotropic puckered structure and an intrinsic in-plane polarization at room temperature, manifests itself as a promising candidate with coupled ferroelectric and ferroelastic order as the basis for multiferroic behavior. Unlike the intrinsic centrosymmetric AB stacking, we demonstrate a multiferroic phase of tin selenide (SnSe), where the inversion symmetry breaking is maintained in AA-stacked multilayers over a wide range of thicknesses. We observe that an interlayer-sliding-induced out-of-plane (OOP) ferroelectric polarization couples with the in-plane (IP) one, making it possible to control out-of-plane polarization via in-plane electric field and vice versa. Notably, thickness scaling yields a sub-0.3 V ferroelectric switching, which promises future low-power-consumption applications. Furthermore, coexisting armchair- and zigzag-like structural domains are imaged under electron microscopy, providing experimental evidence for the degenerate ferroelastic ground states theoretically predicted. Non-centrosymmetric SnSe, as the first layered multiferroic at room temperature, provides a novel platform not only to explore the interactions between elementary excitations with controlled symmetries, but also to efficiently tune the device performance via external electric and mechanical stress.
The authors observe out-of-plane ferroelectric polarization induced by interlayer sliding in a multiferroic van der Waals semiconductor. The switching voltage scales down to 0.3 V at room temperature, which promises low-power device applications.
Journal Article
Toxicity of amantadine hydrochloride on cultured bovine cornea endothelial cells
2021
Amantadine hydrochloride (HCl) is commonly prescribed for treating influenza A virus infection and Parkinson’s disease. Recently, several studies have indicated that the use of amantadine HCl is associated with corneal edema; however, the cytotoxic effect of amantadine HCl has not been investigated. In the present study, the effects of amantadine HCl on cell growth, proliferation, and apoptosis in bovine cornea endothelial cells, and in vitro endothelial permeability were examined. Results showed that lower doses of amantadine HCl do not affect cell growth (≤ 20 μΜ), whereas higher doses of amantadine HCl inhibits cell growth (≥ 50 μΜ), induces apoptosis (2000 μΜ), increases sub-G1 phase growth arrest (2000 μΜ), causes DNA damage (≥ 1000 μΜ), and induces endothelial hyperpermeability (≥ 1000 μΜ) in bovine cornea endothelial cells; additionally, we also found that amantadine HCl attenuates the proliferation (≥ 200 μΜ) and arrests cell cycle at G1 phase (≥ 200 μΜ) in bovine cornea endothelial cells. In the present study, we measured the cytotoxic doses of amantadine HCl on cornea endothelial cells, which might be applied in evaluating the association of corneal edema.
Journal Article