MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
Journal Article

Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching

2025
Request Book From Autostore and Choose the Collection Method
Overview
The search for van der Waals (vdW) multiferroic materials has been challenging but also holds great potential for the next-generation multifunctional nanoelectronics. The group-IV monochalcogenide, with an anisotropic puckered structure and an intrinsic in-plane polarization at room temperature, manifests itself as a promising candidate with coupled ferroelectric and ferroelastic order as the basis for multiferroic behavior. Unlike the intrinsic centrosymmetric AB stacking, we demonstrate a multiferroic phase of tin selenide (SnSe), where the inversion symmetry breaking is maintained in AA-stacked multilayers over a wide range of thicknesses. We observe that an interlayer-sliding-induced out-of-plane (OOP) ferroelectric polarization couples with the in-plane (IP) one, making it possible to control out-of-plane polarization via in-plane electric field and vice versa. Notably, thickness scaling yields a sub-0.3 V ferroelectric switching, which promises future low-power-consumption applications. Furthermore, coexisting armchair- and zigzag-like structural domains are imaged under electron microscopy, providing experimental evidence for the degenerate ferroelastic ground states theoretically predicted. Non-centrosymmetric SnSe, as the first layered multiferroic at room temperature, provides a novel platform not only to explore the interactions between elementary excitations with controlled symmetries, but also to efficiently tune the device performance via external electric and mechanical stress. The authors observe out-of-plane ferroelectric polarization induced by interlayer sliding in a multiferroic van der Waals semiconductor. The switching voltage scales down to 0.3 V at room temperature, which promises low-power device applications.