Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6,566
result(s) for
"Lin, Chuan"
Sort by:
Learning English and Chinese as foreign languages : sociocultural and comparative perspectives
\"This book compares English as a Foreign Language teaching in Taiwan with Chinese as a Foreign Language education in England and highlights how classroom activities are embedded within ethnic or social group cultures, family resources and school visions or goals, and it highlights the potential for a perpetuation of social inequality as a result\"-- Provided by publisher.
GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice
2018
Grain number and size are interactive agronomic traits that determine grain yield. However, the molecular mechanisms responsible for coordinating the trade-off between these traits remain elusive. Here, we characterized the rice (Oryza sativa) grain size and number1 (gsn1) mutant, which has larger grains but sparser panicles than the wild type due to disordered localized cell differentiation and proliferation. GSN1 encodes the mitogen-activated protein kinase phosphatase OsMKP1, a dual-specificity phosphatase of unknown function. Reduced expression of GSN1 resulted in larger and fewer grains, whereas increased expression resulted in more grains but reduced grain size. GSN1 directly interacts with and inactivates the mitogen-activated protein kinase OsMPK6 via dephosphorylation. Consistent with this finding, the suppression of mitogen-activated protein kinase genes OsMPK6, OsMKK4, and OsMKKK10 separately resulted in denser panicles and smaller grains, which rescued the mutant gsn1 phenotypes. Therefore, OsMKKK10-OsMKK4-OsMPK6 participates in panicle morphogenesis and acts on a common pathway in rice. We confirmed that GSN1 is a negative regulator of the OsMKKK10-OsMKK4-OsMPK6 cascade that determines panicle architecture. The GSN1-MAPK module coordinates the trade-off between grain number and grain size by integrating localized cell differentiation and proliferation. These findings provide important insights into the developmental plasticity of the panicle and a potential means to improve crop yields.
Journal Article
UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice
2020
Grain size is an important component trait of grain yield, which is frequently threatened by abiotic stress. However, little is known about how grain yield and abiotic stress tolerance are regulated. Here, we characterize
GSA1
, a quantitative trait locus (QTL) regulating grain size and abiotic stress tolerance associated with metabolic flux redirection.
GSA1
encodes a UDP-glucosyltransferase, which exhibits glucosyltransferase activity toward flavonoids and monolignols.
GSA1
regulates grain size by modulating cell proliferation and expansion, which are regulated by flavonoid-mediated auxin levels and related gene expression. GSA1 is required for the redirection of metabolic flux from lignin biosynthesis to flavonoid biosynthesis under abiotic stress and the accumulation of flavonoid glycosides, which protect rice against abiotic stress.
GSA1
overexpression results in larger grains and enhanced abiotic stress tolerance. Our findings provide insights into the regulation of grain size and abiotic stress tolerance associated with metabolic flux redirection and a potential means to improve crops.
Increasing grain yield needs to be put in the context of environmental stress. Here, the authors reveal that a UDP-glucosyltransferase is associated with regulation of rice grain size, abiotic stress tolerance, flavonoid-mediated auxin signaling, and redirection of carbon flux to flavonoid glycosides synthesis.
Journal Article
Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis
2019
ObjectiveThe medicinal fungus Ophiocordyceps sinensis and its anamorph Hirsutella sinensis have a long history of use in traditional Chinese medicine for their immunomodulatory properties. Alterations of the gut microbiota have been described in obesity and type 2 diabetes. We examined the possibility that H. sinensis mycelium (HSM) and isolated fractions containing polysaccharides may prevent diet-induced obesity and type 2 diabetes by modulating the composition of the gut microbiota.DesignHigh-fat diet (HFD)-fed mice were treated with HSM or fractions containing polysaccharides of different molecular weights. The effects of HSM and polysaccharides on the gut microbiota were assessed by horizontal faecal microbiota transplantation (FMT), antibiotic treatment and 16S rDNA-based microbiota analysis.ResultsFraction H1 containing high-molecular weight polysaccharides (>300 kDa) considerably reduced body weight gain (∼50% reduction) and metabolic disorders in HFD-fed mice. These effects were associated with increased expression of thermogenesis protein markers in adipose tissues, enhanced gut integrity, reduced intestinal and systemic inflammation and improved insulin sensitivity and lipid metabolism. Gut microbiota analysis revealed that H1 polysaccharides selectively promoted the growth of Parabacteroides goldsteinii, a commensal bacterium whose level was reduced in HFD-fed mice. FMT combined with antibiotic treatment showed that neomycin-sensitive gut bacteria negatively correlated with obesity traits and were required for H1’s anti-obesogenic effects. Notably, oral treatment of HFD-fed mice with live P. goldsteinii reduced obesity and was associated with increased adipose tissue thermogenesis, enhanced intestinal integrity and reduced levels of inflammation and insulin resistance.ConclusionsHSM polysaccharides and the gut bacterium P. goldsteinii represent novel prebiotics and probiotics that may be used to treat obesity and type 2 diabetes.
Journal Article
The effects of blogger recommendations on customers' online shopping intentions
2013
Purpose - Blogging has become part of a consumer's decision making process when shopping online; however, the understanding of blog recommendation's effect on consumer purchase decision is still vague. The purpose of this study is to examine whether the blog reader's trusting belief in the blogger is significant in relation to the perceived usefulness of the blogger's recommendations; and how the blog reader's perceptions influence his her attitude and purchasing behavior online. The moderating effect of blogger's reputation on readers' purchasing intentions is also tested.Design methodology approach - Based on various theories, a model was proposed in this study. A survey involving 327 blog readers as participants was analyzed in the empirical study to investigate whether the usefulness of bloggers' recommendations and trusting beliefs toward blogger had influence on consumers' attitudes and behavioral intentions toward online shopping.Findings - The results indicated that perceived usefulness of bloggers' recommendations and trust had significant influential effect on blog users' attitude towards and intention to shop online. Moreover, the findings showed that different determinants affected the users of perceived-high-reputation and perceived-low-reputation blogs.Originality value - The findings suggest bloggers' electronic word-of-mouth (eWOM) to be a promising marketing strategy for increasing sales. The marketers should provide free trial products and services to the perceived-high-reputation bloggers who, as valued opinion leaders, will influence and prompt others to shop online through a trusting effect. As for perceived-low-reputation bloggers, the marketing strategists should strive to emphasize the usefulness of products and services being marketed, so these perceived-low-reputation bloggers can focus more on describing the advantages and benefits of products or services discussed in their blogs.
Journal Article
High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes
2019
Li metal has the highest specific capacity (3860 mA h g−1) and the lowest electrochemical potential (− 3.04 V vs. SHE) of available metal anodes. Together with the high specific capacity of sulfur cathodes (1670 mA h g−1), Li metal–S batteries are a promising candidate to achieve high energy density batteries for electric vehicles and future industry. However, Li metal anodes suffer from corrosive reactions with electrolytes, a theoretically infinite volume change, and the growth of dendrites during electrochemical cycling. To realize the practical application of Li metal–S batteries, protective layers or artificial solid-electrolyte interphase (ASEI) layers have been applied to the surface of Li metal. These ASEI layers demonstrate capabilities to suppress the growth of dendrites and mitigate side reactions, which enhance the performance and safety of Li metal anodes in liquid-electrolyte systems, though there are still limitations and challenges. The development of solid-state electrolytes as artificial SEIs provides a promising route to suppress the issues of dendrite formation and the polysulfide “shuttle effect” in Li–S chemistry; however, the improvement in the interfacial compatibility and stability between the Li metal and the solid-state electrolyte is crucially needed.In this review, we summarize different types of ASEI layers used to protect Li metal, especially in Li–S batteries, with both liquid- and solid-electrolyte systems. We also briefly introduce the concept of anode protection of Mg metal and its application in Mg–S batteries. Perspectives regarding the further development and improvement of ASEI layers for Li metal and Mg metal are discussed.
Journal Article
Lineage recording in human cerebral organoids
2022
Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enable highly resolved descriptions of cell states within these systems; however, approaches are needed to directly measure lineage relationships. Here we establish iTracer, a lineage recorder that combines reporter barcodes with inducible CRISPR–Cas9 scarring and is compatible with single-cell and spatial transcriptomics. We apply iTracer to explore clonality and lineage dynamics during cerebral organoid development and identify a time window of fate restriction as well as variation in neurogenic dynamics between progenitor neuron families. We also establish long-term four-dimensional light-sheet microscopy for spatial lineage recording in cerebral organoids and confirm regional clonality in the developing neuroepithelium. We incorporate gene perturbation (iTracer-perturb) and assess the effect of mosaic
TSC2
mutations on cerebral organoid development. Our data shed light on how lineages and fates are established during cerebral organoid formation. More broadly, our techniques can be adapted in any iPSC-derived culture system to dissect lineage alterations during normal or perturbed development.
A dual-channel recording system for high-resolution lineage tracing.
Journal Article
A Framework for Fall Detection Based on OpenPose Skeleton and LSTM/GRU Models
2021
Falling is one of the causes of accidental death of elderly people over 65 years old in Taiwan. If the fall incidents are not detected in a timely manner, it could lead to serious injury or even death of those who fell. General fall detection approaches require the users to wear sensors, which could be cumbersome for the users to put on, and misalignment of sensors could lead to erroneous readings. In this paper, we propose using computer vision and applied machine-learning algorithms to detect fall without any sensors. We applied OpenPose real-time multi-person 2D pose estimation to detect movement of a subject using two datasets of 570 × 30 frames recorded in five different rooms from eight different viewing angles. The system retrieves the locations of 25 joint points of the human body and detects human movement through detecting the joint point location changes. The system is able to effectively identify the joints of the human body as well as filtering ambient environmental noise for an improved accuracy. The use of joint points instead of images improves the training time effectively as well as eliminating the effects of traditional image-based approaches such as blurriness, light, and shadows. This paper uses single-view images to reduce equipment costs. We experimented with time series recurrent neural network, long- and short-term memory, and gated recurrent unit models to learn the changes in human joint points in continuous time. The experimental results show that the fall detection accuracy of the proposed model is 98.2%, which outperforms the baseline 88.9% with 9.3% improvement.
Journal Article
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
2019
In recent years, wearable monitoring devices have been very popular in the health care field and are being used to avoid sport injuries during exercise. They are usually worn on the wrist, the same as sport watches, or on the chest, like an electrocardiogram patch. Common functions of these wearable devices are that they use real time to display the state of health of the body, and they are all small sized. The electromyogram (EMG) signal is usually used to show muscle activity. Thus, the EMG signal could be used to determine the muscle-fatigue conditions. In this study, the goal is to develop an EMG patch which could be worn on the lower leg, the gastrocnemius muscle, to detect real-time muscle fatigue while exercising. A micro controller unit (MCU) in the EMG patch is part of an ARM Cortex-M4 processor, which is used to measure the median frequency (MF) of an EMG signal in real time. When the muscle starts showing tiredness, the median frequency will shift to a low frequency. In order to delete the noise of the isotonic EMG signal, the EMG patch has to run the empirical mode decomposition algorithm. A two-electrode circuit was designed to measure the EMG signal. The maximum power consumption of the EMG patch was about 39.5 mAh. In order to verify that the real-time MF values measured by the EMG patch were close to the off-line MF values measured by the computer system, we used the root-mean-square value to estimate the difference in the real-time MF values and the off-line MF values. There were 20 participants that rode an exercise bicycle at different speeds. Their EMG signals were recorded with an EMG patch and a physiological measurement system at the same time. Every participant rode the exercise bicycle twice. The averaged root-mean-square values were 2.86 ± 0.86 Hz and 2.56 ± 0.47 Hz for the first and second time, respectively. Moreover, we also developed an application program implemented on a smart phone to display the participants’ muscle-fatigue conditions and information while exercising. Therefore, the EMG patch designed in this study could monitor the muscle-fatigue conditions to avoid sport injuries while exercising.
Journal Article
Controllable Thin‐Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers
by
Xiao, Kai
,
Torsi, Riccardo
,
Robinson, Joshua A.
in
2D materials
,
alloy
,
Chemical vapor deposition
2021
Two‐dimensional (2D) transition metal dichalcogenides (TMDs) exhibit exciting properties and versatile material chemistry that are promising for device miniaturization, energy, quantum information science, and optoelectronics. Their outstanding structural stability permits the introduction of various foreign dopants that can modulate their optical and electronic properties and induce phase transitions, thereby adding new functionalities such as magnetism, ferroelectricity, and quantum states. To accelerate their technological readiness, it is essential to develop controllable synthesis and processing techniques to precisely engineer the compositions and phases of 2D TMDs. While most reviews emphasize properties and applications of doped TMDs, here, recent progress on thin‐film synthesis and processing techniques that show excellent controllability for substitutional doping of 2D TMDs are reported. These techniques are categorized into bottom–up methods that grow doped samples on substrates directly and top–down methods that use energetic sources to implant dopants into existing 2D crystals. The doped and alloyed variants from Group VI TMDs will be at the center of technical discussions, as they are expected to play essential roles in next‐generation optoelectronic applications. Theoretical backgrounds based on first principles calculations will precede the technical discussions to help the reader understand each element's likelihood of substitutional doping and the expected impact on the material properties. Doping and alloying two‐dimensional (2D) materials offer tremendous opportunities for tuning their properties and adding new functionalities. In this review, recent progress on the non‐equilibrium thin‐film techniques that can provide scalable, large‐area synthesis and good degrees of controllability for the compositional engineering of 2D materials are summarized, especially focusing on semiconducting transition metal dichalcogenides including methods from bottom–up synthesis to top–down processing.
Journal Article