MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise
Journal Article

An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise

2019
Request Book From Autostore and Choose the Collection Method
Overview
In recent years, wearable monitoring devices have been very popular in the health care field and are being used to avoid sport injuries during exercise. They are usually worn on the wrist, the same as sport watches, or on the chest, like an electrocardiogram patch. Common functions of these wearable devices are that they use real time to display the state of health of the body, and they are all small sized. The electromyogram (EMG) signal is usually used to show muscle activity. Thus, the EMG signal could be used to determine the muscle-fatigue conditions. In this study, the goal is to develop an EMG patch which could be worn on the lower leg, the gastrocnemius muscle, to detect real-time muscle fatigue while exercising. A micro controller unit (MCU) in the EMG patch is part of an ARM Cortex-M4 processor, which is used to measure the median frequency (MF) of an EMG signal in real time. When the muscle starts showing tiredness, the median frequency will shift to a low frequency. In order to delete the noise of the isotonic EMG signal, the EMG patch has to run the empirical mode decomposition algorithm. A two-electrode circuit was designed to measure the EMG signal. The maximum power consumption of the EMG patch was about 39.5 mAh. In order to verify that the real-time MF values measured by the EMG patch were close to the off-line MF values measured by the computer system, we used the root-mean-square value to estimate the difference in the real-time MF values and the off-line MF values. There were 20 participants that rode an exercise bicycle at different speeds. Their EMG signals were recorded with an EMG patch and a physiological measurement system at the same time. Every participant rode the exercise bicycle twice. The averaged root-mean-square values were 2.86 ± 0.86 Hz and 2.56 ± 0.47 Hz for the first and second time, respectively. Moreover, we also developed an application program implemented on a smart phone to display the participants’ muscle-fatigue conditions and information while exercising. Therefore, the EMG patch designed in this study could monitor the muscle-fatigue conditions to avoid sport injuries while exercising.