Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
284 result(s) for "Liu, Chenlu"
Sort by:
Discrete-Time Visual Servoing Control with Adaptive Image Feature Prediction Based on Manipulator Dynamics
In this paper, a practical discrete-time control method with adaptive image feature prediction for the image-based visual servoing (IBVS) scheme is presented. In the discrete-time IBVS inner-loop/outer-loop control architecture, the time delay caused by image capture and computation is noticed. Considering the dynamic characteristics of a 6-DOF manipulator velocity input system, we propose a linear dynamic model to describe the motion of a robot end effector. Furthermore, for better estimation of image features and smoothing of the robot’s velocity input, we propose an adaptive image feature prediction method that employs past image feature data and real robot velocity data to adopt the prediction parameters. The experimental results on a 6-DOF robotic arm demonstrate that the proposed method can ensure system stability and accelerate system convergence.
Pectin methylesterase activity is required for RALF1 peptide signalling output
The extracellular matrix plays an integrative role in cellular responses in plants, but its contribution to the signalling of extracellular ligands largely remains to be explored. Rapid alkalinisation factors (RALFs) are extracellular peptide hormones that play pivotal roles in various physiological processes. Here, we address a crucial connection between the de-methylesterification machinery of the cell wall component pectin and RALF1 activity. Pectin is a polysaccharide, contributing to the structural integrity of the cell wall. Our data illustrate that the pharmacological and genetic interference with pectin methyl esterases (PMEs) abolishes RALF1-induced root growth repression. Our data suggest that positively charged RALF1 peptides bind negatively charged, de-methylesterified pectin with high avidity. We illustrate that the RALF1 association with de-methylesterified pectin is required for its FERONIA-dependent perception, contributing to the control of the extracellular matrix and the regulation of plasma membrane dynamics. Notably, this mode of action is independent of the FER-dependent extracellular matrix sensing mechanism provided by FER interaction with the leucine-rich repeat extensin (LRX) proteins. We propose that the methylation status of pectin acts as a contextualizing signalling scaffold for RALF peptides, linking extracellular matrix dynamics to peptide hormone-mediated responses.
Glutamine deficiency promotes recurrence and metastasis in colorectal cancer through enhancing epithelial–mesenchymal transition
Background Glutamine is the most abundant amino acid in the body and plays a vital role in colorectal cancer (CRC) cell metabolism. However, limited studies have investigated the clinical and prognostic significance of preoperative serum glutamine levels in patients with colorectal cancer, and the underlying mechanism has not been explored. Methods A total of 121 newly diagnosed CRC patients between 2012 and 2016 were enrolled in this study. Serum glutamine levels were detected, and their associations with clinicopathological characteristics, systemic inflammation markers, carcinoembryonic antigen (CEA) and prognosis were analysed. In addition, the effect of glutamine depletion on recurrence and metastasis was examined in SW480 and DLD1 human CRC cell lines, and epithelial–mesenchymal transition (EMT)-related markers were detected to reveal the possible mechanism. Results A decreased preoperative serum level of glutamine was associated with a higher T-class and lymph node metastasis ( P  < 0.05). A higher serum level of glutamine correlated with a lower CEA level ( r  = − 0.25, P  = 0.02). Low glutamine levels were correlated with shorter overall survival (OS) and disease-free survival (DFS). Multivariate Cox regression analysis showed that serum glutamine was an independent prognostic factor for DFS ( P  = 0.018), and a nomogram predicting the probability of 1-, 3- and 5-year DFS after radical surgery was built. In addition, glutamine deficiency promoted the migration and invasion of CRC cells. E-cadherin, a vital marker of EMT, was decreased, and EMT transcription factors, including zeb1and zeb2, were upregulated in this process. Conclusions This study elucidated that preoperative serum glutamine is an independent prognostic biomarker to predict CRC progression and suggested that glutamine deprivation might promote migration and invasion in CRC cells by inducing the EMT process.
Radioprotective effects and mechanism of HL-003 on radiation-induced salivary gland damage in mice
Ionizing radiation (IR) can cause damage to the structure and function of salivary glands. Our research group independently synthesized the ROS scavenger, HL-003. The aim of this study was to explore the protective effects and underlying mechanisms of HL-003 on radiation-induced salivary gland injury. Salivary flow rate measurement, H&E staining, immunohistochemistry, FRAP, TUNEL, and western blotting were used to evaluate the radioprotective effect on salivary glands. The results showed that HL-003 protected the salivary secretion function by protecting the AQP-5 protein, on the salivary epithelial cell membrane, from IR damage. HL-003 reduced oxidative stress in the salivary gland by regulating the expression of ROS-related proteins NOX4, SOD2, and 8-OHdG. Furthermore, HL-003 downregulated the expression of p-p53, Bax, caspase 3, and caspase 9, and upregulated the expression of Bcl-2, suggesting that it could inhibit the activation of p53 to reduce cell apoptosis. In conclusion, HL-003 is an effective radioprotector that prevents damage of the radiation-induced salivary gland.
Cardiac repair using regenerating neonatal heart tissue-derived extracellular vesicles
Neonatal mammalian hearts are capable of regenerating by inducing cardiomyocyte proliferation after injury. However, this regenerative capability in adult mammalian hearts almost disappears. Extracellular vesicles (EVs) have been shown to play vital cardioprotective roles in heart repair. Here, we report that EVs from regenerating neonatal heart tissues, after apical resection surgery (AR-Neo-EVs), exhibit stronger pro-proliferative, anti-apoptotic, and pro-angiogenesis activities than EVs from neonatal mouse cardiac tissues (Neo-EVs), effects which are absent in adult mouse heart-derived EVs (Adu-EVs). Proteomic analysis reveals the expression of Wdr75 protein, a regulator of p53, is higher in AR-Neo-EVs than in Neo-EVs. It is shown the regenerative potential of AR-Neo-EVs is abrogated when Wdr75 is knocked down. We further show that delivery of AR-Neo-EVs by sodium alginate hydrogel microspheres is an effective treatment in myocardial infraction. This work shows the potential of using EVs from regenerating tissue to trigger protective and regenerative mechanisms. Unlike neonatal mammalian hearts, adult hearts have limited regenerative capacity. Here, the authors explore the use of extracellular vesicles collected from neonatal hearts flowing damage, explore the difference in protein expression and delivery potential to trigger myocardial repair.
Upstream open reading frames buffer translational variability during Drosophila evolution and development
Protein abundance tends to be more evolutionarily conserved than mRNA levels both within and between species, yet the mechanisms underlying this phenomenon remain largely unknown. Upstream open reading frames (uORFs) are widespread cis -regulatory elements in eukaryotic genomes that regulate translation, but it remains unclear whether and how uORFs contribute to stabilizing protein levels. In this study, we performed ribosome translation simulations on mRNA to quantitatively assess the extent to which uORF translation influences the translational variability of downstream coding sequences (CDSs) across varying contexts. Our simulations revealed that uORF translation dampens CDS translational variability, with buffering capacity increasing in proportion to uORF translation efficiency, length, and number. We then compared the translatomes at different developmental stages of two Drosophila species, demonstrating that uORFs buffer mRNA translation fluctuations during both evolution and development. Experimentally, deleting a uORF in the bicoid ( bcd ) gene—a prominent example of translational buffering—resulted in extensive changes in gene expression and phenotypes in Drosophila melanogaster . Additionally, we observed uORF-mediated buffering between primates and within human populations. Together, our results reveal a novel regulatory mechanism by which uORFs stabilize gene translation during development and across evolutionary time.
Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep
The circadian rhythm is an evolutionarily conserved mechanism with translational regulation increasingly recognized as pivotal in its modulation. In this study, we found that upstream open reading frames (uORFs) are enriched in Drosophila circadian rhythm genes, with particularly conserved uORFs present in core circadian clock genes. We demonstrate evidence that the uORFs of the core clock gene, Clock ( Clk ), rhythmically and substantially attenuate CLK protein translation in Drosophila , with pronounced suppression occurring during daylight hours. Eliminating Clk uORFs leads to increased CLK protein levels during the day and results in a shortened circadian cycle, along with a broad shift in clock gene expression rhythms. Notably, Clk uORF deletion also augments morning sleep by reducing dopaminergic activity. Beyond daily circadian adjustments, Clk uORFs play a role in modulating sleep patterns in response to seasonal daylight variations. Furthermore, the Clk uORFs act as an important regulator to shape the rhythmic expression of a vast array of genes and influence multifaceted physiological outcomes. Collectively, our research sheds light on the intricate ways uORFs dynamically adjust downstream coding sequences to acclimate to environmental shifts.
Identification of oral cancer in OCT images based on an optical attenuation model
Surgery is still the first choice to treat oral cancer, where it is important to detect surgical margins in order to reduce cancer recurrence and maintain oral-maxillofacial function simultaneously. As a non-invasive and in situ imaging technique, optical coherence tomography (OCT) can obtain images close to the resolution of histopathology, which makes it have great potential in intraoperative diagnosis. However, it is not enough to find surgical margins accurately just observing OCT images directly and qualitatively. The purpose of this study is to identify oral cancer in OCT images by investigating the quantitative difference of cancer and non-cancer tissue. Based on an available optical attenuation model and the axial confocal PSF of a home-made swept source OCT system, by using fresh ex vivo human oral tissues from 14 patients of oral squamous cell carcinoma (OSCC) as the samples, diagnosis with sensitivity (97.88%) and specificity (83.77%) was achieved at the attenuation threshold of 4.7 mm −1 , and the accuracy of identification reached 91.15% in our study. Our preliminary results demonstrated that the oral cancer resection will be guided accurately and the clinical application of OCT will be further promoted by deeply mining the information hidden in OCT images.
Classification of oral salivary gland tumors based on texture features in optical coherence tomography images
Currently, the diagnoses of oral diseases primarily depend on the visual recognition of experienced clinicians. It has been proven that automatic recognition based on images can support clinical decision-making by extracting and analyzing objective hidden information. In recent years, optical coherence tomography (OCT) has become a powerful optical imaging technique with the advantages of high resolution and non-invasion. In our study, a dataset composed of four kinds of oral salivary gland tumors (SGTs) was obtained from a homemade swept-source OCT, including two benign and two malignant tumors. Seventy-six texture features were extracted from OCT images to create computational models of diseases. It was demonstrated that the artificial neural network (ANN) based on principal component analysis (PCA) can obtain high diagnostic sensitivity and specificity (higher than 99%) for these four kinds of tumors. The classification accuracy of each tumor is larger than 99%. In addition, the performances of two classifiers (ANN and support vector machine) were quantitatively evaluated based on SGTs. It was proven that the texture features in OCT images provided objective information to classify oral tumors.
Comparative Evaluation of 4-Dimensional Computed Tomography and 4-Dimensional Magnetic Resonance Imaging to Delineate the Target of Primary Liver Cancer
Purpose: To evaluate the feasibility of 4-dimensional magnetic resonance imaging (4DMRI) in establishing the target of primary liver cancer in comparison with 4-dimensional computed tomography (4DCT). Methods and Materials: A total of 23 patients with primary liver cancer who received radiotherapy were selected, and 4DCT and T2w-4DMRI simulations were conducted to obtain 4DCT and T2w-4DMRI simulation images. The 4DCT and T2w-4DMRI data were sorted into 10 and 8 respiratory phase bins, respectively. The liver and gross tumor volumes (GTVs) were delineated in all images using programmed clinical workflows under tumor delineation guidelines. The internal organs at risk volumes (IRVs) and internal target volumes (ITVs) were the unions of all the phase livers and GTVs, respectively. Then, the artifacts, liver volume, GTV, and motion range in 4DCT and T2w-4DMRI were compared. Results: The mean GTV volume based on 4DMRI was 136.42 ± 231.27 cm3, which was 25.04 cm3 (15.5%) less than that of 4DCT (161.46 ± 280.29 cm3). The average volume of ITV determined by 4DMRI was 166.12 ± 270.43 cm3, which was 22.44 cm3 (11.9%) less than that determined by 4DCT (188.56 ± 307.57 cm3). Liver volume and IRV in 4DMRI increased by 4.0% and 6.6%, respectively, compared with 4DCT. The difference in tumor motion by T2w-4DMRI based on the centroid was greater than that of 4DCT in the L/R, A/P, and S/I directions, and the average displacement differences were 2.6, 2.8, and 6.9 mm, respectively. The severe artifacts in 4DCT were 47.8% (11/23) greater than in 4DMRI 17.4% (4/23). Conclusions: Compared with 4DCT, T2-weighted and navigator-triggered 4DMRI produces fewer artifacts and larger motion differences in hepatic intrafraction tumors, which is a feasible technique for primary liver cancer treatment planning.