Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
309
result(s) for
"Liu, Yijin"
Sort by:
Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes
by
Wei, Chenxi
,
Cloetens, Peter
,
Jiang, Zhisen
in
639/301/1023/1025
,
639/301/930/2735
,
639/4077/4079/891
2020
The microstructure of a composite electrode determines how individual battery particles are charged and discharged in a lithium-ion battery. It is a frontier challenge to experimentally visualize and, subsequently, to understand the electrochemical consequences of battery particles’ evolving (de)attachment with the conductive matrix. Herein, we tackle this issue with a unique combination of multiscale experimental approaches, machine-learning-assisted statistical analysis, and experiment-informed mathematical modeling. Our results suggest that the degree of particle detachment is positively correlated with the charging rate and that smaller particles exhibit a higher degree of uncertainty in their detachment from the carbon/binder matrix. We further explore the feasibility and limitation of utilizing the reconstructed electron density as a proxy for the state-of-charge. Our findings highlight the importance of precisely quantifying the evolving nature of the battery electrode’s microstructure with statistical confidence, which is a key to maximize the utility of active particles towards higher battery capacity.
Developing understanding of degradation phenomena in nickel rich cathodes is under intense investigation. Here the authors use learning-assisted statistical analysis and experiment-informed mathematical modelling to resolve the microstructure of a Ni-rich NMC composite cathode.
Journal Article
Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy
2017
Understanding the reaction pathway and kinetics of solid-state phase transformation is critical in designing advanced electrode materials with better performance and stability. Despite the first-order phase transition with a large lattice mismatch between the involved phases, spinel LiMn
1.5
Ni
0.5
O
4
is capable of fast rate even at large particle size, presenting an enigma yet to be understood. The present study uses advanced two-dimensional and three-dimensional nano-tomography on a series of well-formed Li
x
Mn
1.5
Ni
0.5
O
4
(0≤
x
≤1) crystals to visualize the mesoscale phase distribution, as a function of Li content at the sub-particle level. Inhomogeneity along with the coexistence of Li-rich and Li-poor phases are broadly observed on partially delithiated crystals, providing direct evidence for a concurrent nucleation and growth process instead of a shrinking-core or a particle-by-particle process. Superior kinetics of (100) facets at the vertices of truncated octahedral particles promote preferential delithiation, whereas the observation of strain-induced cracking suggests mechanical degradation in the material.
As an intercalation electrode material for lithium ion batteries, spinel Li
x
Mn
1.5
Ni
0.5
O
4
possesses a metastable nature during the electrochemical operation. Here the authors reveal the phase transformation mechanism by using single-crystal hard X-ray microscopy to detect the local phase distribution.
Journal Article
Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials
2020
Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.
The authors here report on the influence of grain orientation on the charge distribution in polycrystalline materials for batteries. The quantitative characterization provides mechanistic insight into the way the grain orientation can be engineered to mitigate the charge heterogeneity.
Journal Article
Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides
2020
Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi
0.8
Mn
0.1
Co
0.1
O
2
(NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.
The interplay of surface chemistry and bulk microstructure in layered oxides is critical to battery performance. Here, the authors demonstrate a comprehensive understanding of such a reaction mechanism within an individual cathode particle using integrated synchrotron imaging methods.
Journal Article
Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes
2022
Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.
The lattice strain and defects in layered oxides is critical to the intercalation chemistry and battery performance. Here, the authors demonstrate a thermal-healing of lattice defects in single-crystalline cathodes caused by the thermal-induced release of lattice strain and the structure ordering.
Journal Article
Image registration for accurate electrode deformation analysis in operando microscopy of battery materials
by
Sun, Tianxiao
,
Peng, Robert
,
Li, Wenlong
in
battery degradation
,
chemomechanical coupling
,
Data acquisition
2025
Operando imaging techniques have become increasingly valuable in both battery research and manufacturing. However, the reliability of these methods can be compromised by instabilities in the imaging setup and operando cells, particularly when utilizing high‐resolution imaging systems. The acquired imaging data often include features arising from both undesirable system vibrations and drift, as well as the scientifically relevant deformations occurring in the battery sample during cell operation. For meaningful analysis, it is crucial to distinguish and separately evaluate these two factors. To address these challenges, we employ a suite of advanced image‐processing techniques. These include fast Fourier transform analysis in the frequency domain, power spectrum‐based assessments for image quality, as well as rigid and non‐rigid image‐registration methods. These techniques allow us to identify and exclude blurred images, correct for displacements caused by motor vibrations and sample holder drift and, thus, prevent unwanted image artifacts from affecting subsequent analyses and interpretations. Additionally, we apply optical flow analysis to track the dynamic deformation of battery electrode materials during electrochemical cycling. This enables us to observe and quantify the evolving mechanical responses of the electrodes, offering deeper insights into battery degradation. Together, these methods ensure more accurate image analysis and enhance our understanding of the chemomechanical interplay in battery performance and longevity. We applied advanced image‐processing techniques, including fast Fourier transform analysis, image registration and optical flow, to mitigate artifacts caused by system instabilities and accurately track battery electrode deformations during operation. This approach improves the reliability of high‐resolution operando imaging, providing deeper insights into battery degradation and enhancing our understanding of chemomechanical interactions in battery performance.
Journal Article
Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V
2022
Nickel-rich layered cathode materials promise high energy density for next-generation batteries when coupled with lithium metal anodes. However, the practical capacities accessible are far less than the theoretical values due to their structural instability during cycling, especially when charged at high voltages. Here we demonstrate that stable cycling with an ultra-high cut-off voltage of 4.8 V can be realized by using an appropriate amount of lithium difluorophosphate in a common commercial electrolyte. The Li||LiNi
0.76
Mn
0.14
Co
0.10
O
2
cell retains 97% of the initial capacity (235 mAh g
–1
) after 200 cycles. The cycling stability is ascribed to the robust interphase on the cathode. It is formed by lithium difluorophosphate decomposition, which is facilitated by the catalytic effect of transition metals. The decomposition products (Li
3
PO
4
and LiF) form a protective interphase. This suppresses transition metal dissolution and cathode surface reconstruction. It also facilitates uniform Li distribution within the cathode, effectively mitigating the strain and crack formation.
Severe capacity decay at high voltages prevents the application of Ni-rich layered oxide cathodes. Here the authors report an electrolyte additive in a common commercial electrolyte that enables stable cycling at an ultra-high voltage of 4.8 V.
Journal Article
Asynchronous domain dynamics and equilibration in layered oxide battery cathode
by
Wu, Feixiang
,
Sharma, Nikhil
,
Zhao, Kejie
in
639/301/299/891
,
639/4077/4079/891
,
639/638/161/891
2023
To improve lithium-ion battery technology, it is essential to probe and comprehend the microscopic dynamic processes that occur in a real-world composite electrode under operating conditions. The primary and secondary particles are the structural building blocks of battery cathode electrodes. Their dynamic inconsistency has profound but not well-understood impacts. In this research, we combine operando coherent multi-crystal diffraction and optical microscopy to examine the chemical dynamics in local domains of layered oxide cathode. Our results not only pinpoint the asynchronicity of the lithium (de)intercalation at the sub-particle level, but also reveal sophisticated diffusion kinetics and reaction patterns, involving various localized processes, e.g., chemical onset, reaction front propagation, domains equilibration, particle deformation and motion. These observations shed new lights onto the activation and degradation mechanisms of state-of-the-art battery cathode materials.
The battery performance at the cell level is an integration of contributions from many active particles. Here, the authors present a direct visualization of the active cathode particles that react heterogeneously and asynchronously by using coherent multi-crystal diffraction and optical microscopy.
Journal Article
Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide
by
Wang, Qinchao
,
Nordlund, Dennis
,
Irwin, Kent D.
in
639/301/299/891
,
639/4077/4079/891
,
639/638/161/891
2020
Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth understanding of the particle-level structure and chemical complexity. In this work, we investigate the Li
1.2
Ni
0.13
Mn
0.54
Co
0.13
O
2
particles morphologically, compositionally, and chemically in three-dimensions. While the composition is generally uniform throughout the particle, the charging induces a strong depth dependency in transition metal valence. Such a valence stratification phenomenon is attributed to the nature of oxygen redox which is very likely mostly associated with Mn. The depth-dependent chemistry could be modulated by the particles’ core-multi-shell morphology, suggesting a structural-chemical interplay. These findings highlight the possibility of introducing a chemical gradient to address the oxygen-loss-induced voltage fade in LirNMC layered materials.
Lithium-rich layered material deserves in-depth understanding because it has large capacity enabled by both cation and anion activities. Here, authors apply 3D spectro-tomography with nano resolution to reveal the multi-layer morphology and depth-dependent transition metal valence distribution associated with oxygen redox.
Journal Article
High-dimensional and high-resolution x-ray tomography for energy materials science
by
Yu, Zhenjiang
,
Wang, Jiajun
,
Liu, Yijin
in
Applied and Technical Physics
,
Characterization and Evaluation of Materials
,
Electrode materials
2020
At the forefront of developments in synchrotron x-ray microscopy, nanoscale-resolution high-dimensional spectrotomography under controlled sample environments has been demonstrated. Such cutting-edge experimental capability has been broadly applied to scientific studies in the field of energy materials science, where the dynamically evolving structural and chemical defects play a vital role in the functionality. In this article, we review novel developments of this technique from both experimental and data/information mining perspectives. Using studies on lithium-ion battery electrode materials as examples, we highlight the rich information in the high-dimensional and high-resolution x-ray tomographic data, which can be used to interpret the complicated thermal-electro-chemo-mechanical interplay that occurs under the operating conditions and collectively determines battery performance. We also discuss the frontier challenges in this field and our perspectives of the future directions in the context of projected major developments in the landscape of large-scale x-ray facilities across the globe.
Journal Article