Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
147 result(s) for "Lochmüller, H."
Sort by:
Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number
Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by loss of the SMN1 gene. The clinical distinction between SMA type I to IV reflects different age of onset and disease severity. SMN2, a nearly identical copy gene of SMN1, produces only 10% of full-length SMN RNA/protein and is an excellent target for a potential therapy. Several clinical trials with drugs that increase the SMN2 expression such as valproic acid and phenylbutyrate are in progress. Solid natural history data for SMA are crucial to enable a correlation between genotype and phenotype as well as the outcome of therapy. We provide genotypic and phenotypic data from 115 SMA patients with type IIIa (age of onset <3 years), type IIIb (age of onset >3 years) and rare type IV (onset >30 years). While 62% of type IIIa patients carry two or three SMN2 copies, 65% of type IIIb patients carry four or five SMN2 copies. Three type IV SMA patients had four and one had six SMN2 copies. Our data support the disease-modifying role of SMN2 leading to later onset and a better prognosis. A statistically significant correlation for > or =4 SMN2 copies with SMA type IIIb or a milder phenotype suggests that SMN2 copy number can be used as a clinical prognostic indicator in SMA patients. The additional case of a foetus with homozygous SMN1 deletion and postnatal measurement of five SMN2 copies illustrates the role of genotypic information in making informed decisions on the management and therapy of such patients.
Mutational spectrum and phenotypic variability of VCP-related neurological disease in the UK
Introduction Hereditary inclusion body myopathy (IBM) with Paget's disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD) is a rare autosomal dominant disorder due to mutations in the valosin-containing protein gene (VCP). The identification of mutations in different exons emphasises that full gene sequencing is required to exclude VCP-related disease.
Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne
Duchenne Muscular Dystrophy (DMD) is a severe muscle disorder caused by lack of dystrophin. Predictive biomarkers able to anticipate response to the therapeutic treatments aiming at dystrophin re-expression are lacking. The objective of this study is to investigate Matrix Metalloproteinase-9 (MMP-9) as predictive biomarker for Duchenne. Two natural history cohorts were studied including 168 longitudinal samples belonging to 66 patients. We further studied 1536 samples obtained from 3 independent clinical trials with drisapersen, an antisense oligonucleotide targeting exon 51: an open label study including 12 patients; a phase 3 randomized, double blind, placebo controlled study involving 186 patients; an open label extension study performed after the phase 3. Analysis of natural history cohorts showed elevated MMP-9 levels in patients and a significant increase over time in longitudinal samples. MMP-9 decreased in parallel to clinical stabilization in the 12 patients involved in the open label study. The phase 3 study and subsequent extension study clarified that the decrease in MMP-9 levels was not predictive of treatment response. These data do not support the inclusion of serum MMP-9 as predictive biomarker for DMD patients.
Clinical improvement of DM1 patients reflected by reversal of disease-induced gene expression in blood
Background Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expansion in the DM1 protein kinase ( DMPK ) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with the clinical improvement in the OPTIMISTIC cohort. Methods Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome measures. Results We identified 608 genes for which their expression was significantly associated with the CTG-repeat expansion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were DNAJB12 , HDAC5 , and TRIM8 , each belonging to a protein family that is being studied in the context of neurological disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Furthermore, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was found, suggesting a partial overlap in blood-based gene dysregulation. Conclusions DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening new avenues for drug discovery and therapy efficacy assessments.
KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors
Congenital myopathies are a group of inherited muscle disorders characterized by hypotonia, weakness and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. Neuromuscular transmission defects have recently been reported in several patients with congenital myopathies (CM). Mutations in KLHL40 are among the most common causes of severe forms of nemaline myopathy. Clinical features of affected individuals include fetal akinesia or hypokinesia, respiratory failure, and swallowing difficulties at birth. Muscle weakness is usually severe and nearly half of the individuals have no spontaneous antigravity movement. The average age of death has been reported to be 5 months in a recent case series. Herein we present a case of a patient with a nemaline myopathy due to KLHL40 mutations (c.604delG, p.Ala202Argfs*56 and c.1513G>C, p.Ala505Pro) with an impressive and prolonged beneficial response to treatment with high-dose pyridostigmine. Myasthenic features or response to ACEI have not previously been reported as a characteristic of nemaline myopathy or KLHL40 -related myopathy.
Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA)
Detailed clinical, neuroradiological, histological, biochemical, and genetic investigations were undertaken in a child suffering from Leigh syndrome. The clinical symptoms started at age five months and led to a severe progressive neurodegenerative disorder causing epilepsy, psychomotor retardation, and tetraspasticity. Biochemical measurement of skeletal muscle showed a severe decrease in mitochondrial complex II. Sequencing of SDHA revealed compound heterozygosity for a nonsense mutation in exon 4 (W119X) and a missense mutation in exon 3 (A83V), both absent in normal controls. In six additional patients—five with Leigh or Leigh-like syndrome and one with neuropathy and ataxia associated with isolated deficiency of complex II—mutations in SDHA were not detected, indicating genetic heterogeneity.
Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs
Mutations in the fukutin-related protein (FKRP) have recently been demonstrated to cause limb girdle muscular dystrophy type 2I (LGMD2I), one of the most common forms of the autosomal recessive LGMDs in Europe. We performed a systematic clinical and muscle MRI assessment in 6 LGMD2I patients and compared these findings with those of 14 patients with genetically confirmed diagnosis of other forms of autosomal recessive LGMDs or dystrophinopathies. All LGMD2I patients had a characteristic clinical phenotype with predominant weakness of hip flexion and adduction, knee flexion and ankle dorsiflexion. These findings were also mirrored on MRI of the lower extremities which demonstrated marked signal changes in the adductor muscles, the posterior thigh and posterior calf muscles. This characteristic clinical and MRI phenotype was also seen in LGMD2A. However, in LGMD2A there was a selective involvement of the medial gastrocnemius and soleus muscle in the lower legs which was not seen in LGMD2I. The pattern in LGMD2A and LGMD2I were clearly different from the one seen in alpha-sarcoglycanopathy and dystrophinopathy type Becker which showed marked signal abnormalities in the anterior thigh muscles. Our results indicate that muscular MRI is a powerful tool for differentiating LGMD2I from other forms of autosomal recessive LGMDs and dystrophinopathies.
Correction: Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease
This Article was originally published under Nature Research’s License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the Article have been modified accordingly.
High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany
Based on previous reports the frequency of co-segregating recessive chloride channel ( CLCN1 ) mutations in families with myotonic dystrophy type 2 (DM2) was suspected to be increased. We have studied the frequency of CLCN1 mutations in two separate patient and control cohorts from Germany and Finland, and for comparison in a German myotonic dystrophy type 1 (DM1) patient cohort. The frequency of heterozygous recessive chloride channel ( CLCN1 ) mutations is disproportionally higher (5 %) in currently diagnosed DM2 patients compared to 1.6 % in the control population ( p = 0.037), while the frequency in DM1 patients was the same as in the controls. Because the two genes segregate independently, the prevalence of CLCN1 mutations in the total DM2 patient population is, by definition, the same as in the control population. Our findings are, however, not based on the total DM2 population but on the currently diagnosed DM2 patients and indicate a selection bias in molecular diagnostic referrals. DM2 patients with co-segregating CLCN1 mutation have an increased likelihood to be referred for molecular diagnostic testing compared to DM2 patients without co-segregating CLCN1 mutation.
High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study
Sporadic inclusion body myositis (s-IBM) is an acquired inflammatory muscle disease of unknown cause. In general, s-IBM presents with slowly progressive, asymmetric weakness, and atrophy of skeletal muscle. There is a mild transitory or nil responsiveness to standard immunosuppressive treatment. A controlled cross-over study of 22 s-IBM patients over 3 months showed a partial improvement in those treated with high-dose intravenous immunoglobulin therapy (IVIG) versus placebo. The present study included 22 patients aged 32-75 years and with a mean duration of disease of 5.2+/-3.6 years. They were randomized by a double-blind, placebo-controlled, cross-over design to monthly infusions of 2 g/kg bodyweight IVIG or to placebo for 6 months each, followed by the alternative treatment. After 6 and 12 months the response to treatment was evaluated, using a modified Medical Research Council scale, Neuromuscular Symptom Score (NSS), the patient's own assessment of improvement, arm outstretched time, and electromyography. No serious side effects were seen, in particular no viral infection and no major cardiac or neurological complications. Overall there was no progression of the disease in 90% of patients, unlike that which might have been expected in untreated patients. A mild and significant improvement (11%) in clinical symptoms was found using NSS, but not with other test procedures. There was a trend to mild improvement in treated patients when using other tests. Individual responses to treatment was heterogeneous. The validity of this study may be reduced by mismatch of groups with regard to age at onset and variability in disease expression. The findings of this study largely confirm those of a previous IVIG trial. Treatment with IVIG may be mildly effective in s-IBM by preventing disease progression or inducing mild improvement. Long-term studies are needed to evaluate further the benefit of IVIG therapy in s-IBM.