Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
12,870
result(s) for
"Lu, Min"
Sort by:
Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring
2022
Primary lung cancer is one of the most common malignant tumors in China. Approximately 60% of lung cancer patients have distant metastasis at the initial diagnosis, so it is necessary to find new tumor markers for early diagnosis and individualized treatment. Tumor markers contribute to the early diagnosis of lung cancer and play important roles in early detection and treatment, as well as in precision medicine, efficacy monitoring, and prognosis prediction. The pathological diagnosis of lung cancer in small biopsy specimens determines whether there are tumor cells in the biopsy and tumor type. Because biopsy is traumatic and the compliance of patients with multiple biopsies is poor, liquid biopsy has become a hot research direction. Liquid biopsies are advantageous because they are nontraumatic, easy to obtain, reflect the overall state of the tumor, and allow for real-time monitoring. At present, liquid biopsies mainly include circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. This review introduces the research progress and clinical application prospect of liquid biopsy technology for lung cancer.
Journal Article
Lu ren jia huo xiao shuo jia
Ben shu shi zuo jia lu min de yi bu guan yu chuang zuo de sui bi ji, bao gua \" wo yi xu wang wei ye \" \" wei ni yu piao yi \" \" qu jing qi \" san bu fen. \" wo yi xu wang wei ye \" shi zuo zhe hui ji duo nian lai dui \" xu gou \" \" xie zuo \" de si kao, ti xian le qi ge ren hua de chuang zuo guan ; di er bu fen shi zuo zhe jin xie nian lai de fang tan huo dui hua ji ; di san bu fen shi zuo zhe jin ji nian de yan jiang he ji.
Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize
by
Jiang, Yuan-Yuan
,
Chai, Yi-Ping
,
Zhou, Yun
in
Acetolactate Synthase - genetics
,
Animal Genetics and Genomics
,
Binding sites
2020
Prime editing is a novel and universal CRISPR/Cas-derived precision genome-editing technology that has been recently developed. However, low efficiency of prime editing has been shown in transgenic rice lines. We hypothesize that enhancing pegRNA expression could improve prime-editing efficiency. In this report, we describe two strategies for enhancing pegRNA expression. We construct a prime editing vector harboring two pegRNA variants for W542L and S621I double mutations in
ZmALS1
and
ZmALS2
. Compared with previous reports in rice, we achieve much higher prime-editing efficiency in maize. Our results are inspiring and provide a direction for the optimization of plant prime editors.
Journal Article
Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy
by
Cheng, Qian
,
Li, Jing-yao
,
Zhou, Zhuan-li
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2021
Diabetic nephropathy (DN) is characterized by sterile inflammation with continuous injury and loss of renal inherent parenchyma cells. Podocyte is an essential early injury target in DN. The injury and loss of podocytes are closely associated with proteinuria, the early symptom of renal injury in DN. However, the exact mechanism for podocyte injury and death in DN remains ambiguous. In this study we investigated whether pyroptosis, a newly discovered cell death pathway was involved in DN. Diabetic mice were generated by high-fat diet/STZ injections. We showed that the expression levels of caspase-11 and cleavage of gasdermin D (GSDMD-N) in podocytes were significantly elevated, accompanied by reduced expression of podocyte makers nephrin and podocin, loss and fusion in podocyte foot processes, increased inflammatory cytokines NF-κB, IL-1β, and IL-18, macrophage infiltration, glomerular matrix expansion and increased urinary albumin to creatinine ratio (UACR). All these changes in diabetic mice were blunted by knockout of caspase-11 or GSDMD. Cultured human and mouse podocytes were treated with high glucose (30 mM), which significantly increased the expression levels of caspase-11 or caspase-4 (the homolog of caspase-11 in human), GSDMD-N, NF-κB, IL-1β, and IL-18, and decreased the expression of nephrin and podocin. Either caspase-4 or GSDMD knockdown by siRNA significantly blunted these changes. In summary, our results demonstrate that caspase-11/4 and GSDMD-mediated pyroptosis is activated and involved in podocyte loss under hyperglycemia condition and the development of DN.
Journal Article
Rotational Projection Statistics for 3D Local Surface Description and Object Recognition
2013
Recognizing 3D objects in the presence of noise, varying mesh resolution, occlusion and clutter is a very challenging task. This paper presents a novel method named Rotational Projection Statistics (RoPS). It has three major modules: local reference frame (LRF) definition, RoPS feature description and 3D object recognition. We propose a novel technique to define the LRF by calculating the scatter matrix of all points lying on the local surface. RoPS feature descriptors are obtained by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics (including low-order central moments and entropy) of the distribution of these projected points. Using the proposed LRF and RoPS descriptor, we present a hierarchical 3D object recognition algorithm. The performance of the proposed LRF, RoPS descriptor and object recognition algorithm was rigorously tested on a number of popular and publicly available datasets. Our proposed techniques exhibited superior performance compared to existing techniques. We also showed that our method is robust with respect to noise and varying mesh resolution. Our RoPS based algorithm achieved recognition rates of 100, 98.9, 95.4 and 96.0 % respectively when tested on the Bologna, UWA, Queen’s and Ca’ Foscari Venezia Datasets.
Journal Article
Development of therapeutic antibodies for the treatment of diseases
by
Wu, Han-Chung
,
Liu, I-Ju
,
Tsai, Han-Zen
in
Antibody market
,
B cells
,
Biomedical and Life Sciences
2020
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Journal Article