Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Lussier, Marc"
Sort by:
Parkin overexpression attenuates muscle atrophy and improves mitochondrial bioenergetics but not histological features of Duchenne muscular dystrophy in mice
Duchenne Muscular Dystrophy (DMD) is the most common childhood muscular disorder. Mitochondrial dysfunctions are key disease features of the disease, and strategies that improve mitochondrial health have emerged as promising to slow disease progression. Emerging evidence indicates that impaired/insufficient mitophagy may contribute to the accumulation of mitochondrial dysfunction seen in patients and animal models of DMD. We therefore hypothesized that overexpressing Parkin, a key mitophagy regulator, may improve mitochondrial and muscle health in a mouse model of DMD. To this end, Parkin was overexpressed using intramuscular injections of adeno-associated viruses performed in 5-week-old and 18-week-old D2.B10-Dmd mdx /J mice (D2.mdx), a widely used mouse model of DMD. Four and 16 weeks of Parkin overexpression initiated in 5-week-old and 18-week-old D2.mdx, respectively, resulted in muscle hypertrophy, as indicated by an increase in muscle mass and fiber cross-sectional area. While Parkin overexpression did not impact maximal mitochondrial respiration or mitochondrial content, it increased the Acceptor Control Ratio, an index of mitochondrial bioenergetic efficiency. Parkin overexpression also decreased mitochondrial H 2 O 2 emission, a surrogate for mitochondrial ROS production. However, Parkin overexpression failed to reduce the proportion of fibers with central nuclei and markers of muscle damage and/or necrosis. Taken all together, our results indicate that Parkin overexpression can attenuate muscle atrophy, improve mitochondrial bioenergetics and lower mitochondrial ROS production in a mouse model of DMD. These findings showcase the partial beneficial effects of overexpressing Parkin in ameliorating some, but not all, pathological features observed in a mouse model of DMD.
GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons
Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. The molecular mechanism controlling the trafficking and function of AMPARs at synapses are not fully understood. Here the authors show that GSG1L, a membrane protein, negatively regulates AMPAR-mediated synaptic transmission and represents a new class of AMPAR auxiliary subunit.
Overview of Sigma-1R Subcellular Specific Biological Functions and Role in Neuroprotection
For the past several years, fundamental research on Sigma-1R (S1R) protein has unveiled its necessity for maintaining proper cellular homeostasis through modulation of calcium and lipid exchange between the endoplasmic reticulum (ER) and mitochondria, ER-stress response, and many other mechanisms. Most of these processes, such as ER-stress response and autophagy, have been associated with neuroprotective roles. In fact, improving these mechanisms using S1R agonists was beneficial in several brain disorders including neurodegenerative diseases. In this review, we will examine S1R subcellular localization and describe S1R-associated biological activity within these specific compartments, i.e., the Mitochondrion-Associated ER Membrane (MAM), ER–Lipid Droplet (ER–LD) interface, ER–Plasma Membreane (ER–PM) interface, and the Nuclear Envelope (NE). We also discussed how the dysregulation of these pathways contributes to neurodegenerative diseases, while highlighting the cellular mechanisms and key binding partners engaged in these processes.
Membrane Targeting and GTPase Activity of Rab7 Are Required for Its Ubiquitination by RNF167
Rab7 is a GTPase that controls late endosome and lysosome trafficking. Recent studies have demonstrated that Rab7 is ubiquitinated, a post-translational modification mediated by an enzymatic cascade. To date, only one ubiquitin E3 ligase and one deubiquitinase have been identified in regulating Rab7 ubiquitination. Here, we report that RNF167, a transmembrane endolysosomal ubiquitin ligase, can ubiquitinate Rab7. Using immunoprecipitation and in vitro ubiquitination assays, we demonstrate that Rab7 is a direct substrate of RNF167. Subcellular fractionation indicates that RNF167 activity maintains Rab7′s membrane localization. Epifluorescence microscopy in HeLa cells shows that Rab7-positive vesicles are larger under conditions enabling Rab7 ubiquitination by RNF167. Characterization of its ubiquitination reveals that Rab7 must be in its GTP-bound active form for membrane anchoring and, thus, accessible for RNF167-mediated ubiquitin attachment. Cellular distribution analyses of lysosome marker Lamp1 show that vesicle positioning is independent of Rab7 and RNF167 expression and that Rab7 endosomal localization is not affected by RNF167 knockdown. However, both Rab7 and RNF167 depletion affect each other’s lysosomal localization. Finally, this study demonstrates that the RNF167-mediated ubiquitination of Rab7 GTPase is impaired by variants of Charcot–Marie–Tooth Type 2B disease. This study identified RNF167 as a new ubiquitin ligase for Rab7 while expanding our knowledge of the mechanisms underlying the ubiquitination of Rab7.
Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission
AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons. Using a RING mutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses.
From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease
The ubiquitin–proteasome system is of fundamental importance in all fields of biology due to its impact on proteostasis and in regulating cellular processes. Ubiquitination, a type of protein post-translational modification, involves complex enzymatic machinery, such as E3 ubiquitin ligases. The E3 ligases regulate the covalent attachment of ubiquitin to a target protein and are involved in various cellular mechanisms, including the cell cycle, cell division, endoplasmic reticulum stress, and neurotransmission. Because the E3 ligases regulate so many physiological events, they are also associated with pathologic conditions, such as cancer, neurological disorders, and immune-related diseases. This review focuses specifically on the protease-associated transmembrane-containing the Really Interesting New Gene (RING) subset of E3 ligases. We describe the structure, partners, and physiological functions of the Drosophila Godzilla E3 ligase and its human homologues, RNF13, RNF167, and ZNRF4. Also, we summarize the information that has emerged during the last decade regarding the association of these E3 ligases with pathophysiological conditions, such as cancer, asthma, and rare genetic disorders. We conclude by highlighting the limitations of the current knowledge and pinpointing the unresolved questions relevant to RNF13, RNF167, and ZNRF4 ubiquitin ligases.
RNF13 Dileucine Motif Variants L311S and L312P Interfere with Endosomal Localization and AP-3 Complex Association
Developmental and epileptic encephalopathies (DEE) are rare and serious neurological disorders characterized by severe epilepsy with refractory seizures and a significant developmental delay. Recently, DEE73 was linked to genetic alterations of the RNF13 gene, which convert positions 311 or 312 in the RNF13 protein from leucine to serine or proline, respectively (L311S and L312P). Using a fluorescence microscopy approach to investigate the molecular and cellular mechanisms affected by RNF13 protein variants, the current study shows that wild-type RNF13 localizes extensively with endosomes and lysosomes, while L311S and L312P do not extensively colocalize with the lysosomal marker Lamp1. Our results show that RNF13 L311S and L312P proteins affect the size of endosomal vesicles along with the temporal and spatial progression of fluorescently labeled epidermal growth factor, but not transferrin, in the endolysosomal system. Furthermore, GST-pulldown and co-immunoprecipitation show that RNF13 variants disrupt association with AP-3 complex. Knockdown of AP-3 complex subunit AP3D1 alters the lysosomal localization of wild-type RNF13 and similarly affects the size of endosomal vesicles. Importantly, our study provides a first step toward understanding the cellular and molecular mechanism altered by DEE73-associated genetic variations of RNF13.
The Candida albicans KRE9 Gene is required for Cell Wall β -1,6-glucan Synthesis and is Essential for Growth on Glucose
We have isolated CaKRE9, a gene from Candida albicans, that is a functional homologue of the Saccharomyces cerevisiae KRE9 gene involved in β -1,6-glucan synthesis. Disruption of the CaKRE9 gene in C. albicans shows that CaKre9p is required for the synthesis or assembly of this fungal polymer. Homozygous null disruptants of CaKRE9 grow poorly on galactose and fail to form hyphae in serum, and, in growth medium containing glucose, the gene is essential. Thus, the CaKRE9 gene product is a potentially useful candidate as a target for fungal-specific drugs.
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.
Structural and Functional Conservation of the Caenorhabditis elegans Timing Gene clk-1
Mutations in the Caenorhabditis elegans gene clk-1 affect biological timing and extend longevity. The gene clk-1 was identified, and the cloned gene complemented the clk-1 phenotypes and restored normal longevity. The CLK-1 protein was found to be conserved among eukaryotes, including humans, and structurally similar to the yeast metabolic regulator Cat5p (also called Coq7p). These proteins contain a tandem duplication of a core 82-residue domain. clk-1 complemented the phenotype of cat5/coq7 null mutants, demonstrating that clk-1 and CAT5/COQ7 share biochemical function and that clk-1 acts at the level of cellular physiology.