Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
9,896 result(s) for "Ma, Xue"
Sort by:
تاريخ الأدب الصيني المعاصر
هذا أول كتاب عن تاريخ الأدب الصيني المعاصر ترجم إلى العربية من الصينية مباشرة، بعد أن لاقى اهتماما كبيرا من الأوساط الثقافية في الصين، نظرا لما يتمتع به من موسوعية. يقسم الكتاب، الأدب الصيني المعاصر إلى جزأين من ناحية النقد. حيث يصف الجزء الأول كيفية حصول قواعد أدبية محددة على الهيمنة المطلقة، بالإضافة إلى الخصائص الأساسية لهذا الشكل الأدبي، أما الجزء الثاني فيكشف الضعف التدريجي، وتفكك هذه القواعد وموقعها المسيطر، وعملية التمايز الأدبي، وإعادة تنظيم البنية الأدبية في السياق التاريخي المتغير.
Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
The current industrial ammonia synthesis relies on Haber–Bosch process that is initiated by the dissociative mechanism, in which the adsorbed N 2 dissociates directly, and thus is limited by Brønsted–Evans–Polanyi (BEP) relation. Here we propose a new strategy that an anchored Fe 3 cluster on the θ-Al 2 O 3 (010) surface as a heterogeneous catalyst for ammonia synthesis from first-principles theoretical study and microkinetic analysis. We have studied the whole catalytic mechanism for conversion of N 2 to NH 3 on Fe 3 /θ-Al 2 O 3 (010), and find that an associative mechanism, in which the adsorbed N 2 is first hydrogenated to NNH, dominates over the dissociative mechanism, which we attribute to the large spin polarization, low oxidation state of iron, and multi-step redox capability of Fe 3 cluster. The associative mechanism liberates the turnover frequency (TOF) for ammonia production from the limitation due to the BEP relation, and the calculated TOF on Fe 3 /θ-Al 2 O 3 (010) is comparable to Ru B5 site. The current industrial ammonia synthesis relies on the Haber-Bosch process that is limited by the Brønsted–Evans–Polanyi relation. Here, the authors propose a new strategy that an anchored Fe 3 on θ-Al 2 O 3 (010) surface serves as a heterogeneous single cluster catalyst for ammonia synthesis from first-principles calculations and microkinetic analysis.
Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI
To help doctors and patients evaluate lumbar intervertebral disc degeneration (IVDD) accurately and efficiently, we propose a segmentation network and a quantitation method for IVDD from T2MRI. A semantic segmentation network (BianqueNet) composed of three innovative modules achieves high-precision segmentation of IVDD-related regions. A quantitative method is used to calculate the signal intensity and geometric features of IVDD. Manual measurements have excellent agreement with automatic calculations, but the latter have better repeatability and efficiency. We investigate the relationship between IVDD parameters and demographic information (age, gender, position and IVDD grade) in a large population. Considering these parameters present strong correlation with IVDD grade, we establish a quantitative criterion for IVDD. This fully automated quantitation system for IVDD may provide more precise information for clinical practice, clinical trials, and mechanism investigation. It also would increase the number of patients that can be monitored. Globally, as a major public health problem, low back pain has been the leading cause of disability worldwide for the past 30 years. Here, the authors propose a segmentation network and a quantitative method lumbar intervertebral disc degeneration assessment.
Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture
• The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. • We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO₂ flux and the open-source software RhizoVision Explorer to analyze scanned images. • We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. • Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat
Advances in high-throughput genotyping enable the generation of genome-scale data much more easily and at lower cost than ever before. However, small-scale and cost-effective high-throughput single-nucleotide polymorphism (SNP) genotyping technologies are still under development. In this study, we compared the performances of TaqMan, KASP and rhAmp SNP genotyping platforms in terms of their assay design flexibility, assay design success rate, allele call rate and quality, ease of experiment run and cost per sample. Fifty SNP markers linked to genes governing various agronomic traits of wheat were chosen to design SNP assays. Design success rates were 39/50, 49/50, and 49/50 for TaqMan, KASP, and rhAmp, respectively, and 30 SNP assays were manufactured for genotyping comparisons across the three platforms. rhAmp showed 97% of samples amplified while TaqMan and KASP showed 93% and 93.5% of amplifications, respectively. Allele call quality of rhAmp was 97%, while it was 98% for both TaqMan and KASP. rhAmp and KASP showed significantly better (p < 0.001) allele discrimination than TaqMan; however, TaqMan showed the most compact cluster. Based on the current market, rhAmp was the least expensive technology followed by KASP. In conclusion, rhAmp provides a reliable and cost-effective option for targeted genotyping and marker-assisted selection in crop genetic improvement.
Small molecule inhibitors targeting the cancers
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment. Small molecule inhibitors have been permitted to be used in post‐line therapy, first‐line treatment, and adjuvant therapy. Compared with post‐line and first‐line treatment, attempts at adjuvant therapy are just beginning. Several factors should be considered in the adjuvant setting, including other standard treatments, subsequent therapy, financial benefit ratio, and treatment‐related side effects.
Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations
The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment. The development of single cell RNA sequencing technologies has been instrumental in advancing our understanding of tissue biology. Here, MacParland et al. performed single cell RNA sequencing of human liver samples, and identify distinct populations of intrahepatic macrophages that may play specific roles in liver disease.
Triticale Improvement for Forage and Cover Crop Uses in the Southern Great Plains of the United States
Triticale (× Wittmack) is a man-made species developed by crossing wheat ( spp.) and rye ( L.). It incorporates favorable alleles from both progenitor species (wheat and rye), enabling adaptation to environments that are less favorable for wheat yet providing better biomass yield and forage quality. Triticale has huge potential for both grain and forage production, though research to improve the crop for better adaptation and grain quality is lagging behind that of other small grains. It is also gaining popularity as a cover crop to improve soil health and reduce nutrient leaching. Because of its genetic and flower structure, triticale is suitable for both line and hybrid breeding methods. Advances in the areas of molecular biology and the wealth of genomic resources from both wheat and rye can be exploited for triticale improvement. Gene mapping and genomic selection will facilitate triticale breeding by increasing selection precision and reducing time and cost. The objectives of this review are to summarize current triticale production status, breeding, and genetics research achievements and to highlight gaps for future research.
Active control on topological immunity of elastic wave metamaterials
The topology concept in the condensed physics and acoustics is introduced into the elastic wave metamaterial plate, which can show the topological property of the flexural wave. The elastic wave metamaterial plate consists of the hexagonal array which is connected by the piezoelectric shunting circuits. The Dirac point is found by adjusting the size of the unit cell and numerical simulations are illustrated to show the topological immunity. Then the closing and breaking of the Dirac point can be generated by the negative capacitance circuits. These investigations denote that the topological immunity can be achieved for flexural wave in mechanical metamaterial plate. The experiments with the active control action are finally carried out to support the numerical design.
Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium
Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen.