Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
57 result(s) for "Maire, Eva"
Sort by:
Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific
Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.
Global correlates of terrestrial and marine coverage by protected areas on islands
Many islands are biodiversity hotspots but also extinction epicenters. In addition to strong cultural connections to nature, islanders derive a significant part of their economy and broader wellbeing from this biodiversity. Islands are thus considered as the socio-ecosystems most vulnerable to species and habitat loss. Yet, the extent and key correlates of protected area coverage on islands is still unknown. Here we assess the relative influence of climate, geography, habitat diversity, culture, resource capacity, and human footprint on terrestrial and marine protected area coverage across 2323 inhabited islands globally. We show that, on average, 22% of terrestrial and 13% of marine island areas are under protection status, but that half of all islands have no protected areas. Climate, diversity of languages, human population density and development are strongly associated with differences observed in protected area coverage among islands. Our study suggests that economic development and population growth may critically limit the amount of protection on islands. Islands have disproportionate importance for biodiversity conservation, yet they may be underrepresented in protected areas. Here the authors assess how climate, geography, habitat diversity, and socio-economic conditions explain terrestrial and marine protected area coverage on inhabited islands and in the surrounding seas globally.
Fishing restrictions and remoteness deliver conservation outcomes for Indonesia's coral reef fisheries
Coral reef fisheries depend on reef fish biomass to support ecosystem functioning and sustainable fisheries. Here, we evaluated coral reefs across 4,000 km of the Indonesian archipelago to reveal a large gradient of biomass, from <100 kg/ha to >17,000 kg/ha. Trophic pyramids characterized by planktivore dominance emerged at high biomass, suggesting the importance of pelagic pathways for reef productivity. Total biomass and the biomass of most trophic groups were higher within gear restricted and no‐take management, but the greatest biomass was found on unmanaged remote reefs. Within marine protected areas (MPAs), 41.6% and 43.6% of gear restricted and no‐take zones, respectively, met a global biomass target of 500 kg/ha, compared with 71.8% of remote sites. To improve conservation outcomes for Indonesia's biodiverse and economically important coral reef fisheries, our results suggest to: (1) strengthen management within Indonesia's existing MPAs and (2) precautionarily manage remote reefs with high biomass.
Navigating sustainability and health trade-offs in global seafood systems
Seafood is expected to play a key role in improving access to healthy diets while providing food products with relatively low rates of greenhouse gas emissions. However, both nutrients and carbon footprints vary among species and production methods, and seafood consumption is further influenced by price and consumer preference, such that it is unclear which species are best placed to provide low-emissions nutritious seafood. Here, we use seafood production data to assess the nutritional value, carbon emissions, sustainability, affordability, and availability of seafood available to UK consumers. Globally, most seafood products are more nutritious and emit lower greenhouse gases than terrestrial animal-source foods, particularly small pelagic fishes and bivalves that contributed to recommended intakes for 3–4 essential dietary nutrients at the lowest emissions. For seafood products relevant to UK markets and consumers, Atlantic mackerel had the highest availability (i.e. landings) of all wild-caught UK seafood and lowest carbon footprint of all finfish, with one fillet portion exceeding recommended intakes of three nutrients (selenium, vitamins B12 and D). We found that price and sustainability of UK seafood, both factors in consumer demand, had considerable trade-offs with nutrients, carbon footprint, and availability. Farmed salmon, for example, were produced in large volumes but were relatively more expensive than other seafood, whereas highly nutritious, low-emissions farmed mussels had limited production volumes. The UK’s seafood system is therefore not currently optimised to produce nutritious, low-emissions seafood in large amounts. Policies that promote local consumption of affordable species already produced in high volumes, such as mackerel, could improve intakes of nutrients that are deficient in the UK population at relatively low environmental cost.
Low fuel cost and rising fish price threaten coral reef wilderness
Wilderness areas offer unparalleled ecosystem conditions. However, growing human populations and consumption are among factors that drive encroachment on these areas. Here, we explore the threat of small‐scale fisheries to wilderness reefs by developing a framework and modeling fluctuations in fishery range with fuel costs and fish prices. We modeled biomass of four fishery groups across the New Caledonian archipelago, and used fish and fuel prices from 2005 to 2020 to estimate the extent of exploited reefs across three fishing scenarios.  From 2012 to 2018, maximum profitable range increased from 15 to over 30 hr from the capital city, expanding to reefs previously uneconomic to fish, including a UNESCO heritage site. By 2020, over half of New Caledonian (∼17% global) wilderness reefs will become profitable to fish. Our results demonstrate that remoteness from humans should not be considered protection for wilderness coral reefs in the context of rising fish prices.
Drivers of nutrient intakes from fisheries in French Polynesia
Small-scale fisheries provide nutrients to hundreds of millions of people worldwide, with yields dependent on the condition of marine habitats such as coral reefs. Small-scale fisheries are a particularly important food source in societies with nutrient deficiencies and where unhealthy food alternatives are widely available. Using data from coral reef surveys around two islands in French Polynesia (Moorea and Raiatea), we show how the availability of nutrients to fisheries changed in relation to the condition of coral habitat. Fish biomass and nutrient availability were highest when coral cover was low around both islands, driven predominantly by abundant herbivorous reef fish. We also investigated the importance of fish in people’s diets, to determine if fish consumption was aligned with available fisheries resources on local reefs and if nutrient intakes from fish could be explained by people’s socioeconomic background. People ate a higher diversity of reef fish in Raiatea, however nutrient intakes from fish were higher in Moorea. Most people ate more fish than meat on both islands, however fish consumption declined over generations. People from fishing households had higher nutrient intakes from reef and pelagic fish, and people from farming households had higher intakes from reef fish. Preference for eating reef fish over pelagic fish was also associated with higher total nutrient intakes. Promoting traditional diets rich in fish could be key to meeting people’s nutritional needs in French Polynesia while reducing diet-related health issues linked to the overconsumption of fat. French and Tahitian versions of the Abstract are available in Supplementary Material.
Micronutrient levels of global tropical reef fish communities differ from fisheries capture
The exceptional diversity of shallow‐water marine fishes contributes to the nutrition of millions of people worldwide through coastal wild‐capture fisheries, with different species having diverse nutritional profiles. Fishes in ecosystems are reservoirs of micronutrients with benefits to human health. Yet, the amount of micronutrients contained in fish species on coral reefs and in shallow tropical waters is challenging to estimate, and the micronutrients caught by fisheries remain uncertain. To assess whether micronutrient deficiencies could be addressed through specific fisheries management actions, we first require a quantification of the potentially available micronutrients contained in biodiverse reef fish assemblages. Here, we therefore undertake a broad heuristic assessment of available micronutrients on tropical reefs using ensemble species distribution modelling and identify potential mismatches with micronutrients derived from summarising coastal fisheries landings data. We find a mismatch between modelled estimates of micronutrients available in the ecosystem on the one hand and the micronutrients in small‐scale fisheries landings data. Fisheries had lower micronutrients than expected from fishes in the modelled assemblage. Further, fisheries were selective for vitamin A, thus resulting in a trade‐off with other micronutrients. Our results remained unchanged after accounting for the under‐sampling of fish communities and under‐reporting of small‐scale fisheries catches—two major sources of uncertainty. This reported mismatch indicates that current estimates of fished micronutrients are not adequate to fully assess micronutrient inventories. However, small‐scale fisheries in some countries were already selective towards micronutrient mass, indicating policies that target improved access, distribution and consumption of fish could leverage this existing high micronutrient mass. Enhanced taxonomic resolution of catches and biodiversity inventories using localised species consumption surveys could improve understanding of nature‐people linkages. Improving fisheries reporting and monitoring of reef fish assemblages will advance the understanding of micronutrient mismatches, which overall indicate a weak uptake of nutritional goals in fisheries practices. The decoupling between micronutrients in ecosystems and in fisheries catches indicates that social, economic, and biodiversity management goals are not shaped around nutritional targets—but this is key to achieve a sustainable and healthy planet for both people and nature. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces
Aim: Functional diversity is a key facet of biodiversity that is increasingly being measured to quantify its changes following disturbance and to understand its effects on ecosystem functioning. Assessing the functional diversity of assemblages based on species traits requires the building of a functional space (dendrogram or multidimensional space) where indices will be computed. However, there is still no consensus on the best method for measuring the quality of functional spaces. Innovation: Here we propose a framework for evaluating the quality of a functional space (i.e. the extent to which it is a faithful representation of the initial functional trait values). Using simulated dataseis, we analysed the influence of the number and type of functional traits used and of the number of species studied on the identity and quality of the best functional space. We also tested whether the quality of the functional space affects functional diversity patterns in local assemblages, using simulated datasets and a real study case. Main conclusions: The quality of functional space strongly varied between situations. Spaces having at least four dimensions had the highest quality, while functional dendrograms and two-dimensional functional spaces always had a low quality. Importantly, we showed that using a poor-quality functional space could led to a biased assessment of functional diversity and false ecological conclusions. Therefore, we advise a pragmatic approach consisting of computing all the possible functional spaces and selecting the most parsimonious one.
mFD: an R package to compute and illustrate the multiple facets of functional diversity
Functional diversity (FD), the diversity of organism attributes that relates to their interactions with the abiotic and biotic environment, has been increasingly used for the last two decades in ecology, biogeography and conservation. Yet, FD has many facets and their estimations are not standardized nor embedded in a single tool. mFD (multifaceted functional diversity) is an R package that uses matrices of species assemblages and species trait values as building blocks to compute most FD indices. mFD is firstly based on two functions allowing the user to summarize trait and assemblage data. Then it calculates trait-based distances between species pairs, informs the user whether species have to be clustered into functional entities and finally computes multidimensional functional space. To let the user choose the most appropriate functional space for computing multidimensional functional diversity indices, two mFD functions allow assessing and illustrating the quality of each functional space. Next, mFD provides 6 core functions to calculate 16 existing FD indices based on trait-based distances, functional entities or species position in a functional space. The mFD package also provides graphical functions based on the ggplot library to illustrate FD values through customizable and high-resolution plots of species distribution among functional entities or in a multidimensional space. All functions include internal validation processes to check for errors in data formatting which return detailed error messages. To facilitate the use of mFD framework, we built an associated website hosting five tutorials illustrating the use of all the functions step by step.