Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Mally, Angela"
Sort by:
Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing
by
Bauer, Benedikt
,
Mally, Angela
,
Liedtke, Daniel
in
Animal research
,
Animal Testing Alternatives - methods
,
Animals
2021
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Journal Article
Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts
by
Chilaka, Cynthia Adaku
,
Obidiegwu, Jude Ejikeme
,
Atanda, Olusegun Oladimeji
in
21st century
,
Agricultural commodities
,
Agriculture
2022
Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.
Journal Article
Risk assessment of ochratoxin A in food
by
del Mazo, Jesús
,
Schrenk, Dieter
,
Chipman, James Kevin
in
Age groups
,
Animal species
,
Biocompatibility
2020
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non‐genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health‐based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non‐neoplastic effects, a BMDL10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL10 based on the non‐neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1845/full
Journal Article
The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment
2022
The “totality” of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds,
N
-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Journal Article
Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review
2020
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Journal Article
Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins
by
Dänicke, Sven
,
Lorenz, Nicole
,
Humpf, Hans-Ulrich
in
Biological and medical sciences
,
Biomedical and Life Sciences
,
chemical structure
2014
As the term “masked mycotoxins” encompasses only conjugated mycotoxins generated by plants and no other possible forms of mycotoxins and their modifications, we hereby propose for all these forms a systematic definition consisting of four hierarchic levels. The highest level differentiates the free and unmodified forms of mycotoxins from those being matrix-associated and from those being modified in their chemical structure. The following lower levels further differentiate, in particular, “modified mycotoxins” into “biologically modified” and “chemically modified” with all variations of metabolites of the former and dividing the latter into “thermally formed” and “non-thermally formed” ones. To harmonize future scientific wording and subsequent legislation, we suggest that the term “modified mycotoxins” should be used in the future and the term “masked mycotoxins” to be kept for the fraction of biologically modified mycotoxins that were conjugated by plants.
Journal Article
In Vitro and In Vivo Analysis of Ochratoxin A-Derived Glucuronides and Mercapturic Acids as Biomarkers of Exposure
2021
Ochratoxin A (OTA) is a widespread food contaminant, with exposure estimated to range from 0.64 to 17.79 ng/kg body weight (bw) for average consumers and from 2.40 to 51.69 ng/kg bw per day for high consumers. Current exposure estimates are, however, associated with considerable uncertainty. While biomarker-based approaches may contribute to improved exposure assessment, there is yet insufficient data on urinary metabolites of OTA and their relation to external dose to allow reliable estimates of daily intake. This study was designed to assess potential species differences in phase II biotransformation in vitro and to establish a correlation between urinary OTA-derived glucuronides and mercapturic acids and external exposure in rats in vivo. In vitro analyses of OTA metabolism using the liver S9 of rats, humans, rabbits and minipigs confirmed formation of an OTA glucuronide but provided no evidence for the formation of OTA-derived mercapturic acids to support their use as biomarkers. Similarly, OTA-derived mercapturic acids were not detected in urine of rats repeatedly dosed with OTA, while indirect analysis using enzymatic hydrolysis of the urine samples prior to LC–MS/MS established a linear relationship between urinary glucuronide excretion and OTA exposure. These results support OTA-derived glucuronides but not mercapturic acids as metabolites suitable for biomonitoring.
Journal Article
Biomonitoring of the mycotoxin Zearalenone: current state-of-the art and application to human exposure assessment
by
Degen, Gisela H.
,
Mally, Angela
,
Solfrizzo, Michele
in
Animals
,
Biomarkers
,
Biomarkers - urine
2016
Zearalenone (ZEN), a mycotoxin with high estrogenic activity in vitro and in vivo, is a widespread food contaminant that is commonly detected in maize, wheat, barley, sorghum, rye and other grains. Human exposure estimates based on analytical data on ZEN occurrence in various food categories and food consumption data suggest that human exposure to ZEN and modified forms of ZEN may be close to or even exceed the tolerable daily intake (TDI) derived by the European Food Safety Authority (EFSA) for some consumer groups. Considering the inherent uncertainties in estimating dietary intake of ZEN that may lead to an under- or overestimation of ZEN exposure and consequently human risk and current lack of data on vulnerable consumer groups, there is a clear need for more comprehensive and reliable exposure data to refine ZEN risk assessment. Human biomonitoring (HBM) is increasingly being recognized as an efficient and cost-effective way of assessing human exposure to food contaminants, including mycotoxins. Based on animal and (limited) human data on the toxicokinetics of ZEN, it appears that excretion of ZEN and its major metabolites may present suitable biomarkers of ZEN exposure. In view of the limitations of available dietary exposure data on ZEN and its modified forms, the purpose of this review is to provide an overview of recent studies utilizing HBM to monitor and assess human exposure to ZEN. Considerations are given to animal and human toxicokinetic data relevant to HBM, analytical methods, and available HBM data on urinary biomarkers of ZEN exposure in different cohorts.
Journal Article
Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses
2020
Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.
Journal Article
Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract
2022
Recent analyses conducted by German official food control reported detection of the aromatic amides
N
-(2,4-dimethylphenyl)acetamide (NDPA),
N
-acetoacetyl-m-xylidine (NAAX) and 3-hydroxy-2-naphthanilide (Naphthol AS) in cold water extracts from certain food contact materials made from paper or cardboard, including paper straws, paper napkins, and cupcake liners. Because aromatic amides may be cleaved to potentially genotoxic primary amines upon oral intake, these findings raise concern that transfer of NDPA, NAAX and Naphthol AS from food contact materials into food may present a risk to human health. The aim of the present work was to assess the stability of NDPA, NAAX and Naphthol AS and potential cleavage to 2,4-dimethylaniline (2,4-DMA) and aniline during simulated passage through the gastrointestinal tract using static in vitro digestion models. Using the digestion model established by the National Institute for Public Health and the Environment (RIVM, Bilthoven, NL) and a protocol recommended by the European Food Safety Authority, potential hydrolysis of the aromatic amides to the respective aromatic amines was assessed by LC–MS/MS following incubation of the aromatic amides with digestive fluid simulants. Time-dependent hydrolysis of NDPA and NAAX resulting in formation of the primary aromatic amine 2,4-DMA was consistently observed in both models. The highest rate of cleavage of NDPA and NAAX was recorded following 4 h incubation with 0.07 M HCl as gastric-juice simulant, and amounted to 0.21% and 0.053%, respectively. Incubation of Naphthol AS with digestive fluid simulants did not give rise to an increase in the concentration of aniline above the background that resulted from the presence of aniline as an impurity of the test compound. Considering the lack of evidence for aniline formation from Naphthol AS and the extremely low rate of hydrolysis of the amide bonds of NDPA and NAAX during simulated passage through the gastrointestinal tract that gives rise to only very minor amounts of the potentially mutagenic and/or carcinogenic aromatic amine 2,4-DMA, risk assessment based on assumption of 100% cleavage to the primary aromatic amines would appear to overestimate health risks related to the presence of aromatic amides in food contact materials.
Journal Article