Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "McArdle, Sara"
Sort by:
Patrolling monocytes control tumor metastasis to the lung
The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical \"patrolling\" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.
Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis
Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β 2 integrin-dependent. Integrins can extend (E + ) and acquire a high-affinity conformation with an ‘open’ headpiece (H + ). The canonical switchblade model of integrin activation proposes that the E + conformation precedes H + , and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β 2 integrins on human neutrophils acquire an unexpected E − H + conformation. E − H + β 2 integrins bind intercellular adhesion molecules (ICAMs) in cis , which inhibits leukocyte adhesion in vitro and in vivo . This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. Integrin β 2 attachment regulates inflammation via effects on neutrophil rolling and extravasation through sequential integrin extension then headpiece opening. Here the authors show an alternative open headpiece prior to extension stabilized in cis by ICAM-1 that limits neutrophil adhesion.
Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues
Background Intravascular leukocyte recruitment in most vertebrate tissues is restricted to postcapillary and collecting venules, whereas capillaries and arterioles usually support little or no leukocyte adhesion. This segmental restriction is thought to be mediated by endothelial, rather than hemodynamic, differences. The underlying mechanisms are largely unknown, in part because effective tools to distinguish, isolate, and analyze venular endothelial cells (V-ECs) and non-venular endothelial cells (NV-ECs) have been unavailable. We hypothesized that the atypical chemokine receptor DARC (Duffy Antigen Receptor for Chemokines, a.k.a. ACKR1 or CD234) may distinguish V-ECs versus NV-ECs in mice. Methods We generated a rat-anti-mouse monoclonal antibody (MAb) that specifically recognizes the erythroid and endothelial forms of native, surface-expressed DARC. Using this reagent, we characterized DARC expression and distribution in the microvasculature of murine tissues. Results DARC was exquisitely restricted to post-capillary and small collecting venules and completely absent from arteries, arterioles, capillaries, veins, and most lymphatics in every tissue analyzed. Accordingly, intravital microscopy showed that adhesive leukocyte-endothelial interactions were restricted to DARC + venules. DARC was detectable over the entire circumference of V-ECs, but was more concentrated at cell-cell junctions. Analysis of single-cell suspensions suggested that the frequency of V-ECs among the total microvascular EC pool varies considerably between different tissues. Conclusions Immunostaining of endothelial DARC allows the identification and isolation of intact V-ECs from multiple murine tissues. This strategy may be useful to dissect the mechanisms underlying segmental microvascular specialization in healthy and diseased tissues and to characterize the role of EC subsets in tissue-homeostasis, immune surveillance, infection, inflammation, and malignancies.
Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories
Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis. Here, the authors characterized the phase separation properties and internal structures of intracellular viral factories induced by Ebola virus and correlated these properties to important steps of viral biogenesis.
Human coronavirus OC43-elicited CD4+ T cells protect against SARS-CoV-2 in HLA transgenic mice
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1 −/− transgenic mice. We find that OC43 infection can elicit polyfunctional CD8 + and CD4 + effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1 −/− transgenic mice, and a longer-term in HLA-B*0702 Ifnar1 −/− transgenic mice. Depletion of CD4 + T cells in HLA-DRB1*0101 Ifnar1 −/− transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4 + T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4 + T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines. The origin of SARS-CoV-2 cross-reactive T cells in unexposed humans is unclear. Here, the authors use HLA transgenic mouse models of sequential infections with human coronavirus OC43 and SARSCoV-2 and show that OC43 elicits cross-protective immunity against SARS-CoV-2, which partially depends on CD4 + T cells.
Anti-Ebola virus mAb 3A6 protects highly viremic animals from fatal outcome via binding GP(1,2) in a position elevated from the virion membrane
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP 1,2 ) are the standard of care for Ebola virus disease (EVD). Anti-GP 1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro and are protective in a mouse model of EVD. However, their neutralization mechanism is poorly understood because they target a GP 1,2 epitope that has evaded structural characterization. Using X-ray crystallography and cryo-electron tomography of mAb 3A6 complexed with its stalk–MPER epitope, we reveal a previously undescribed mechanism in which 3A6 binds to a conformation of GP 1,2 that is lifted from the virion membrane. We further show that in both domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high-viremia advanced disease stages and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. The findings reported here can guide design of next-generation highly potent anti-EBOV therapeutics and vaccines. Here, combining X-ray crystallography, cryo-electron tomography and animal studies, the authors show that the monoclonal antibody against Ebola virus glycoprotein (GP1,2) 3A6 exerts protection via binds to a conformation of GP1,2 that is lifted from the virion membrane, providing insights into the mechanism of action with implications for the design of anti-Ebola therapeutics.
Treatment of pancreatic cancer with irreversible electroporation and intratumoral CD40 antibody stimulates systemic immune responses that inhibit liver metastasis in an orthotopic model
BackgroundPancreatic cancer (PC) has a poor prognosis, and most patients present with either locally advanced or distant metastatic disease. Irreversible electroporation (IRE) is a non-thermal method of ablation used clinically in locally advanced PC, but most patients eventually develop distant recurrence. We have previously shown that IRE alone is capable of generating protective, neoantigen-specific immunity. Here, we aim to generate meaningful therapeutic immune effects by combining IRE with local (intratumoral) delivery of a CD40 agonistic antibody (CD40Ab).MethodsKPC46 organoids were generated from a tumor-bearing male KrasLSL-G12D-p53LSL-R172H-Pdx-1-Cre (KPC) mouse. Orthotopic tumors were established in the pancreatic tail of B6/129 F1J mice via laparotomy. Mice were randomized to treatment with either sham laparotomy, IRE alone, CD40Ab alone, or IRE followed immediately by CD40Ab injection. Metastatic disease and immune infiltration in the liver were analyzed 14 days postprocedure using flow cytometry and multiplex immunofluorescence imaging with spatial analysis. Candidate neoantigens were identified by mutanome profiling of tumor tissue for ex vivo functional analyses.ResultsThe combination of IRE+CD40 Ab improved median survival to greater than 35 days, significantly longer than IRE (21 days) or CD40Ab (24 days) alone (p<0.01). CD40Ab decreased metastatic disease burden, with less disease in the combination group than in the sham group or IRE alone. Immunohistochemistry of liver metastases revealed a more than twofold higher infiltration of CD8+T cells in the IRE+CD40 Ab group than in any other group (p<0.01). Multiplex immunofluorescence imaging revealed a 4–6 fold increase in the density of CD80+CD11c+ activated dendritic cells (p<0.05), which were spatially distributed throughout the tumor unlike the sham group, where they were restricted to the periphery. In contrast, CD4+FoxP3+ T-regulatory cells (p<0.05) and Ly6G+myeloid derived cells (p<0.01) were reduced and restricted to the tumor periphery in the IRE+CD40 Ab group. T-cells from the IRE+CD40 Ab group recognized significantly more peptides representing candidate neoantigens than did T-cells from the IRE or untreated control groups.ConclusionsIRE can induce local tumor regression and neoantigen-specific immune responses. Addition of CD40Ab to IRE improved dendritic cell activation and neoantigen recognition, while generating a strong systemic antitumor T-cell response that inhibited metastatic disease progression.
Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice
ObjectiveAlcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease.DesignpIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/-) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes.ResultsLivers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation.ConclusionOur results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.
Unmasking early microglial remodeling in an Alzheimer’s disease mouse model
Early neuroimmune remodeling is a critical yet understudied component of Alzheimer’s disease (AD) pathogenesis. To investigate microglial contributions to AD development prior to overt plaque deposition, we developed an open-source morphometric pipeline to systematically quantify hippocampal microglial structure and activation states in pre-plaque 5xFAD mice. Across ∼11,000 cells, we extracted multidimensional parameters including area, circularity, convex hull, branch points, nearest-neighbor distance, and nuclear features, alongside Iba1 and CD68 intensity measurements. While no significant overt gliosis was observed at this early stage, microglia from 5xFAD mice exhibited subtle trends toward increased structural complexity compared to wild-type controls. Importantly, significant sex-specific differences were detected within the CA1 subregion: male 5xFAD microglia displayed hyper-ramified morphologies consistent with enhanced surveillance states, whereas female microglia demonstrated greater density and a more reactive phenotype. Correlation analyses revealed a conserved association between microglial complexity and Iba1/CD68 expression, independent of sex or genotype, underscoring a fundamental link between cytoskeletal remodeling and phagolysosomal activity. These findings highlight the capacity of morphometric profiling to sensitively detect early, region-specific, and sex-dependent shifts in microglial phenotype before amyloid deposition. By integrating quantitative morphology with canonical molecular markers, this framework provides a robust and unbiased approach for characterizing microglial activation trajectories. Such early readouts may inform biomarker discovery and therapeutic strategies aimed at modulating microglial responses to delay or prevent AD progression.