Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "McDole, Katie"
Sort by:
Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data
This paper describes automated methods for the accurate segmentation and tracking of tens of thousands of nuclei in time-lapse imaging data of developing embryos. The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for the segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (i) generality by reconstructing cell lineages in four-dimensional, terabyte-sized image data sets of fruit fly, zebrafish and mouse embryos acquired with three types of fluorescence microscopes, (ii) scalability by analyzing advanced stages of development with up to 20,000 cells per time point at 26,000 cells min −1 on a single computer workstation and (iii) ease of use by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. Our approach achieves on average 97.0% linkage accuracy across all species and imaging modalities. Using our system, we performed the first cell lineage reconstruction of early Drosophila melanogaster nervous system development, revealing neuroblast dynamics throughout an entire embryo.
Whole-central nervous system functional imaging in larval Drosophila
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. To understand how neuronal networks function, it is important to measure neuronal network activity at the systems level. Here Lemon et al . develop a framework that combines a high-speed multi-view light-sheet microscope, a whole-CNS imaging assay and computational tools to demonstrate simultaneous functional imaging across the entire isolated Drosophila larval CNS.
Efficient processing and analysis of large-scale light-sheet microscopy data
The Keller lab describes a detailed protocol for processing large multidimensional imaging datasets obtained from light-sheet microscopy. Light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high spatiotemporal resolution and over long time scales. Such experiments typically generate terabytes of multidimensional image data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols and software to tackle these steps, focusing on the imaging-based study of animal development. Our protocols facilitate (i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore CPU architectures, reducing image data size 30–500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. These software modules are open source. They provide high data throughput using a single computer workstation and are readily applicable to a wide spectrum of biological model systems.
Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs. Cell lineages in developing embryos are reconstructed from time-lapse microscopy images.
Hinge point emergence in mammalian spinal neurulation
Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with lowmesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.
Light sheet fluorescence microscopy
Light sheet fluorescence microscopy (LSFM) uses a thin sheet of light to excite only fluorophores within the focal volume. Light sheet microscopes (LSMs) have a true optical sectioning capability and, hence, provide axial resolution, restrict photobleaching and phototoxicity to a fraction of the sample and use cameras to record tens to thousands of images per second. LSMs are used for in-depth analyses of large, optically cleared samples and long-term three-dimensional (3D) observations of live biological specimens at high spatio-temporal resolution. The independently operated illumination and detection trains and the canonical implementations, selective/single plane illumination microscope (SPIM) and digital scanned laser microscope (DSLM), are the basis for many LSM designs. In this Primer, we discuss various applications of LSFM for imaging multicellular specimens, developing vertebrate and invertebrate embryos, brain and heart function, 3D cell culture models, single cells, tissue sections, plants, organismic interaction and entire cleared brains. Further, we describe the combination of LSFM with other imaging approaches to allow for super-resolution or increased penetration depth and the use of sophisticated spatio-temporal manipulations to allow for observations along multiple directions. Finally, we anticipate developments of the field in the near future.Light sheet fluorescence microscopy (LSFM) is a technique that uses a thin sheet of light for illumination, allowing optical sectioning of the sample. In this Primer, Stelzer et al. outline the fundamental concepts behind LSFM, discuss the different experimental set-ups for light sheet microscopes and detail steps for processing LSFM images. The Primer also describes the range of applications for this technique across the biological sciences and concludes by discussing advances for enhancing imaging depth and resolution.
Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells
B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientation in neural progenitor cells and migration of neurons probably cause brain disorganizations found in lamin-B null mice. Thus, our studies not only disprove several prevailing views of lamin-Bs but also establish a foundation for redefining the function of the nuclear lamina in the context of tissue building and homeostasis.
Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data
This paper describes automated methods for the accurate segmentation and tracking of tens of thousands of nuclei in time-lapse imaging data of developing embryos.
Cell fate establishment and regulation in the pre-implantation mouse embryo
Pre-implantation development represents the first three to four days in the life of the mammalian embryo. In this stage the first cell fate determination events take place. In as little as five cell divisions, the inner cell mass (ICM) and trophectoderm (TE) have been specified and committed. These lineages will go on to form the embryo proper, and placental and extra-embryonic tissues, respectively. While this stage of development is a relatively simple, reproducible model that contains only a few numbers of cells, little is known about how initial differences that drive specification arise. Complicating the relative simplicity of the pre-implantation embryo, its sensitivity to environmental conditions and photo-toxicity make it difficult to visualize differentiation events as they occur. Here I have demonstrated for the first time the use and ability of two-photon laser scanning microscopy in providing superior spatiotemporal resolution for live imaging over the entire course of pre-implantation development. These imaging conditions do not perturb the developmental competency of the embryo, and allow me to visualize not only cell fate based on nuclear positions, but follow endogenous cell fate markers and reporters of cell surface exposure and cell-cell contacts. The ability to visualize the mouse embryo in this unprecedented level of detail have allowed me to address and resolve a number of questions that have gone unresolved in the field of pre-implantation development, and will hopefully stimulate future investigation using these tools.