Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
67
result(s) for
"Mei, Qibing"
Sort by:
Cyclosporine A loaded brain targeting nanoparticle to treat cerebral ischemia/reperfusion injury in mice
2022
Background
Ischemic stroke is one of the main causes of death and disability in the world. The treatment for ischemic stroke is to restore blood perfusion as soon as possible. However, when ischemic brain tissue is re-perfused by blood, the mitochondrial permeability transition pore (mPTP) in neuron and microglia is excessively opened, resulting in the apoptosis of neuron and nerve inflammation. This aggravates nerve injury. Cyclosporine A (CsA) inhibits the over-opening of mPTP, subsequently reducing the release of ROS and the apoptosis of cerebral ischemia/reperfusion injured neuron and microglia. However, CsA is insoluble in water and present in high concentrations in lymphatic tissue. Herein, cerebral infarction tissue targeted nanoparticle (CsA@HFn) was developed to treat cerebral ischemia/reperfusion injury.
Results
CsA@HFn efficiently penetrated the blood-brain barrier (BBB) and selectively accumulated in ischemic area, inhibiting the opening of mPTP and ROS production in neuron. This subsequently reduced the apoptosis of neuron and the damage of BBB. Consequently, CsA@HFn significantly reduced the infarct area. Moreover, CsA@HFn inhibited the recruitment of astrocytes and microglia in ischemic region and polarized microglia into M2 type microglia, which subsequently alleviated the nerve inflammation.
Conclusions
CsA@HFn showed a significant therapeutic effect on cerebral ischemia/reperfusion injury by alleviating the apoptosis of neuron, nerve inflammation and the damage of BBB in ischemic area. CsA@HFn has great potential in the treatment of ischemic stroke.
Graphical Abstract
Journal Article
Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM
2022
Background
Clinical studies have shown that the efficacy of programmed cell death receptor-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors on glioblastoma (GBM) is much lower than what is expected because of the low immunogenicity of GBM. Ferroptosis of cancer cells can induce the maturation of dendritic cells (DC cells) and increase the activity of T cell. The activated T cells release IFN-γ, which subsequently induces the ferroptosis of cancer cells. Thus, the aim of this paper is to set up a new GBM-targeted drug delivery system (Fe
3
O
4
-siPD-L1@M
-BV2
) to boost ferroptosis for immunotherapy of drug-resistant GBM.
Results
Fe
3
O
4
-siPD-L1@M
-BV2
significantly increased the accumulation of siPD-L1 and Fe
2+
in orthotopic drug-resistant GBM tissue in mice. Fe
3
O
4
-siPD-L1@M
-BV2
markedly decreased the protein expression of PD-L1 and increased the ratio between effector T cells and regulatory T cells in orthotopic drug-resistant GBM tissue. Moreover, Fe
3
O
4
-siPD-L1@M
-BV2
induced ferroptosis of GBM cells and maturation of DC cell, and it also increased the ratio between M1-type microglia and M2-type microglia in orthotopic drug-resistant GBM tissue. Finally, the growth of orthotopic drug-resistant GBM in mice was significantly inhibited by Fe
3
O
4
-siPD-L1@M
-BV2
.
Conclusion
The mutual cascade amplification effect between ferroptosis and immune reactivation induced by Fe
3
O
4
-siPD-L1@M
-BV2
significantly inhibited the growth of orthotopic drug-resistant GBM and prolonged the survival time of orthotopic drug-resistant GBM mice.
Graphical Abstract
Journal Article
Tregs biomimetic nanoparticle to reprogram inflammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice
2022
Background
At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myocardium. In this paper, a regulatory T cells (Tregs) biomimetic nanoparticle (CsA@PPTK) was prepared by camouflaging nanoparticle with platelet membrane.
Results
CsA@PPTK actively accumulated in ischemic myocardium of MI/RI mice. CsA@PPTK significantly scavenged reactive oxygen species (ROS) and increased the generation of Tregs and the ratio of M2 type macrophage to M1 type macrophage in ischemic myocardium. Moreover, CsA@PPTK significantly attenuated apoptosis of cardiomyocytes and reduced the infarct size and fibrosis area in ischemic myocardium. CsA@PPTK markedly decreased the protein expression of MMP-9 and increased the protein expression of CX43 in ischemic myocardium tissue. Subsequently, the remodeling of the left ventricle was significant alleviated, and heart function of MI/RI mice was markedly improved.
Conclusion
CsA@PPTK showed significant therapeutic effect on MI/RI, and it has great potential application in the treatment of MI/RI.
Graphical Abstract
Journal Article
Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro
by
Cheng, Ying
,
Mei, Qibing
,
Liu, Miao
in
Antioxidants - chemistry
,
Antioxidants - pharmacology
,
Apoptosis
2013
The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro.
The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe²⁺ method and H₂O₂-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS.
Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H₂O₂-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells.
Journal Article
A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications
2022
Rubia cordifolia (family: Rubiaceae) L ( R. cordifolia ) is a perennial botanical drug climbing vine. As the main part of the traditional Chinese medicine, the rhizome has a long history. A great number of literary studies have reported that it can be used for the improvement of blood circulation, hemostasis, activation of collaterals, etc. When it comes to the wide application of R. cordifolia in traditional medicine, we systematically review its traditional uses, phytochemistry and pharmacological effects. Literatures were systematically searched using several scientific databases, including China National Knowledge Infrastructure (CNKI), Baidu Scholar , PubMed , Web of Science , and other professional websites. Kew Botanical Garden and the iPlant were used for obtaining the scientific names and plant images of R. cordifolia . In addition, other information was also gathered from books including traditional Chinese herbal medicine, the Chinese Pharmacopoeia , and Chinese Materia Medica . So far, many prescriptions containing R. cordifolia have been widely used in the clinical treatment of abnormal uterine bleeding, primary dysmenorrhea and other gynecological diseases, allergic purpura, renal hemorrhage and other diseases. The phytochemistry studies have reported that more than 100 compounds are found in R. cordifolia , such as bicyclic peptides, terpenes, polysaccharides, trace elements, flavonoids, and quinones. Among them, quinones and peptides are the types of components with the highest contents in R. cordifolia . The modern pharmacological studies have revealed that R. cordifolia and its derived components have anti-tumor, anti-oxidative, anti-platelet aggregation, and anti-inflammatory effects. However, most studies are preclinical. The pharmacological mechanism of R. cordifolia has not been thoroughly studied. In addition, there are few pharmacokinetic and toxicity studies of R. cordifolia , therefore the clinical safety data for R. cordifolia is lacking. To sum up, this review for the first time summarizes a systemic and integrated traditional uses, chemical compositions, pharmacological actions and clinical applications of R. cordifolia , which provides the novel and full-scale insight for the drug development, medicinal value, and application of R. cordifolia in the future.
Journal Article
Improved Analytical Sensitivity of Lateral Flow Assay using Sponge for HBV Nucleic Acid Detection
2017
Hepatitis B virus (HBV) infection is a serious public health problem, which can be transmitted through various routes (
e
.
g
., blood donation) and cause hepatitis, liver cirrhosis and liver cancer. Hence, it is necessary to do diagnostic screening for high-risk HBV patients in these transmission routes. Nowadays, protein-based technologies have been used for HBV testing, which however involve the issues of large sample volume, antibody instability and poor specificity. Nucleic acid hybridization-based lateral flow assay (LFA) holds great potential to address these limitations due to its low-cost, rapid, and simple features, but the poor analytical sensitivity of LFA restricts its application. In this study, we developed a low-cost, simple and easy-to-use method to improve analytical sensitivity by integrating sponge shunt into LFA to decrease the fluid flow rate. The thickness, length and hydrophobicity of the sponge shunt were sequentially optimized, and achieved 10-fold signal enhancement in nucleic acid testing of HBV as compared to the unmodified LFA. The enhancement was further confirmed by using HBV clinical samples, where we achieved the detection limit of 10
3
copies/ml as compared to 10
4
copies/ml in unmodified LFA. The improved LFA holds great potential for diseases diagnostics, food safety control and environment monitoring at point-of-care.
Journal Article
Toll-like Receptors and Thrombopoiesis
2023
Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.
Journal Article
Study of Bitespiramycin Distribution in Rats and Cerebrospinal Fluid of Patients by a Sensitive LC-MS/MS Method with Rapid Sample Preparation
2024
Bitespiramycin, has been shown to have a therapeutic effect against respiratory tract inflammation, including a potential effect against COVID-19. A current clinical trial in China showed that bitespiramycin was an effective treatment for severe pneumonia and intracranial infection. However, there is lack of an analytical method to elucidate the distribution of bitespiramycin. In this study, a highly sensitive, rapid and reliable UPLC–MS/MS method was developed to comprehensively characterize the bitespiramycin distribution in various bio-samples, which is significantly improved upon the published work. A rapid sample preparation method was developed by using n-butanol as the solvent to extract bitespiramycin from different bio-samples. The extract was then directly analyzed by UPLC–MS/MS coupled with an alkaline-resistant column after centrifugation which avoids the time-consuming concentration process under nitrogen and redissolution. The method was employed to accurately quantify bitespiramycin and its metabolites in rat plasma, tissues, and human cerebrospinal fluid. Notably, the presence of bitespiramycin and its metabolites was identified for the first time in various rat organs including brain, testis, bladder and prostate as well as in human cerebrospinal fluid. This newly developed approach shows great promise for drug distribution assays including other antibiotics and can help elucidate the ADME of bitespiramycin.
Journal Article
Ultra Performance Liquid Chromatography-Based Metabonomic Study of Therapeutic Effect of the Surface Layer of Poria cocos on Adenine-Induced Chronic Kidney Disease Provides New Insight into Anti-Fibrosis Mechanism
2013
The surface layer of Poria cocos (Fu-Ling-Pi, FLP) is commonly used in traditional Chinese medicine and its diuretic effect was confirmed in rat. Ultra performance liquid chromatography/quadrupole time-of-flight high-sensitivity mass spectrometry and a novel mass spectrometry(Elevated Energy) data collection technique was employed to investigate metabonomic characteristics of chronic kidney disease (CKD) induced from adenine excess and the protective effects of FLP. Multiple metabolites are detected in the CKD and are correlated with progressive renal injury. Among these biomarkers, lysoPC(18∶0), tetracosahexaenoic acid, lysoPC(18∶2), creatinine, lysoPC (16∶0) and lysoPE(22∶0/0∶0) in the FLP-treated group were completely reversed to levels in the control group which lacked CKD. Combined with biochemistry and histopathology results, the changes in serum metabolites indicate that the perturbations of phospholipids metabolism, energy metabolism and amino acid metabolism are related to adenine-induced CKD and to the interventions of FLP on all the three metabolic pathways. FLP may regulate the metabolism of these biomarkers, especially their efficient utilization within the context of CKD. Furthermore, these biomarkers might serve as characteristics to explain the mechanisms of FLP.
Journal Article
Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells
2012
Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however.
Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the in vitro Caco-2 cell monolayer model system and in situ intestinal perfusion and in vivo pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols.
After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells.
Journal Article