Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
273
result(s) for
"Mele, Andrea"
Sort by:
In silico investigation of the puzzling dopamine effects on excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons
by
Mele, Andrea
,
Migliore, Michele
,
Manara, Enrico
in
631/378/116
,
631/57/2266
,
Action Potentials
2025
It has been shown that in the CA1 region of the hippocampus, dopamine modulates memory functions by influencing spike-timing-dependent plasticity (STDP) and intrinsic neuronal properties. Although experimental findings have suggested potential mechanisms, their detailed interplay remains incompletely understood. Here, using a realistic CA1 pyramidal neuron model, we have investigated the possible effects of dopaminergic modulation on a neuron’s signal integration and synaptic plasticity processes. The results suggest a physiological plausible explanation for the puzzling experimental observation that long-term potentiation (LTP) increases in spite of a reduction in the neuron’s excitability, and explains why physiological dopamine levels are necessary for LTP induction. The model suggests experimentally testable predictions on which ion channel kinetic properties can modulate the interplay between synaptic plasticity and neuronal excitability, thereby identifying potential molecular targets for therapeutic intervention.
Journal Article
Band-Gap Energies of Choline Chloride and Triphenylmethylphosphoniumbromide-Based Systems
by
Mele, Andrea
,
Mannu, Alberto
,
Di Pietro, Maria Enrica
in
Choline - chemistry
,
deep band-gap systems
,
deep eutectic solvents
2020
UV–VIS spectroscopy analysis of six mixtures containing choline chloride or triphenylmethylphosphonium bromide as the hydrogen bond acceptor (HBA) and different hydrogen bond donors (HBDs, nickel sulphate, imidazole, d-glucose, ethylene glycol, and glycerol) allowed to determine the indirect and direct band-gap energies through the Tauc plot method. Band-gap energies were compared to those relative to known choline chloride-containing deep band-gap systems. The measurements reported here confirmed the tendency of alcohols or Lewis acids to increment band-gap energy when employed as HBDs. Indirect band-gap energy of 3.74 eV was obtained in the case of the triphenylmethylphosphonium bromide/ethylene glycol system, which represents the smallest transition energy ever reported to date for such kind of systems.
Journal Article
Available Technologies and Materials for Waste Cooking Oil Recycling
by
Mannu, Alberto
,
Garroni, Sebastiano
,
Mele, Andrea
in
Biodiesel fuels
,
Biofuels
,
Biomedical materials
2020
Recently, the interest in converting waste cooking oils (WCOs) to raw materials has grown exponentially. The driving force of such a trend is mainly represented by the increasing number of WCO applications, combined with the definition, in many countries, of new regulations on waste management. From an industrial perspective, the simple chemical composition of WCOs make them suitable as valuable chemical building blocks, in fuel, materials, and lubricant productions. The sustainability of such applications is sprightly related to proper recycling procedures. In this context, the development of new recycling processes, as well as the optimization of the existing ones, represents a priority for applied chemistry, chemical engineering, and material science. With the aim of providing useful updates to the scientific community involved in vegetable oil processing, the current available technologies for WCO recycling are herein reported, described, and discussed. In detail, two main types of WCO treatments will be considered: chemical transformations, to exploit the chemical functional groups present in the waste for the synthesis of added value products, and physical treatments as extraction, filtration, and distillation procedures. The first part, regarding chemical synthesis, will be connected mostly to the production of fuels. The second part, concerning physical treatments, will focus on bio-lubricant production. Moreover, during the description of filtering procedures, a special focus will be given to the development and applicability of new materials and technologies for WCO treatments.
Journal Article
Innovative applications of waste cooking oil as raw material
by
Mannu, Alberto
,
Di Pietro, Maria Enrica
,
Mele, Andrea
in
Authorship
,
Biodiesel fuels
,
Biofuels
2019
The consideration towards waste cooking oils is changing from hazardous waste to valuable raw material for industrial application. During the last 5 years, some innovative processes based on the employment of recycled waste cooking oil have appeared in the literature. In this review article, the most recent and innovative applications of recycled waste cooking oil are reported and discussed. These include the production of bioplasticizers, the application of chemicals derived from waste cooking oils as energy vectors and the use of waste cooking oils as a solvent for pollutant agents.
Journal Article
Specific patterns of neural activity in the hippocampus after massed or distributed spatial training
by
Rinaldi, Arianna
,
Fralleoni, Luca
,
Mele, Andrea
in
631/378/116/2395
,
631/378/1595
,
631/378/1595/1554
2023
Training with long inter-session intervals, termed
distributed training
, has long been known to be superior to training with short intervals, termed
massed training
. In the present study we compared c-Fos expression after massed and distributed training protocols in the Morris water maze to outline possible differences in the learning-induced pattern of neural activation in the dorsal CA1 in the two training conditions. The results demonstrate that training and time lags between learning opportunities had an impact on the pattern of neuronal activity in the dorsal CA1. Mice trained with the distributed protocol showed sustained neuronal activity in the postero-distal component of the dorsal CA1. In parallel, in trained mice we found more active cells that tended to constitute spatially restricted clusters, whose degree increased with the increase in the time lags between learning trials. Moreover, activated cell assemblies demonstrated increased stability in their spatial organization after distributed as compared to massed training or control condition. Finally, using a machine learning algorithm we found that differences in the number of c-Fos positive cells and their location in the dorsal CA1 could be predictive of the training protocol used. These results suggest that the topographic organization and the spatial location of learning activated cell assemblies might be critical to promote the increased stability of the memory trace induced by distributed training.
Journal Article
Septal cholinergic input to CA2 hippocampal region controls social novelty discrimination via nicotinic receptor-mediated disinhibition
by
Fuchs, Elke C
,
Griguoli, Marilena
,
Mele, Andrea
in
Acetylcholine
,
Acetylcholine receptors (nicotinic)
,
Animals
2021
Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.
Journal Article
Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to FeFe-Hydrogenases
by
Zampella, Giuseppe
,
Arrigoni, Federica
,
Pétillon, François Y.
in
Antifungal agents
,
Chemical Sciences
,
DFT calculations
2022
The behaviour of triazolylidene ligands coordinated at a Fe2(CO)5(µ-dithiolate) core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C1H NMR spectroscopies, elemental analyses, X-ray diffraction, and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a Fe-H⋯H-S interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction).
Journal Article
A gene expression atlas for different kinds of stress in the mouse brain
by
Oliverio, Alberto
,
Mannironi Cecilia
,
Flati Tiziano
in
Adaptation
,
Bioinformatics
,
Computational neuroscience
2020
Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.
Journal Article
Acute Stress Alters Amygdala microRNA miR-135a and miR-124 Expression: Inferences for Corticosteroid Dependent Stress Response
by
Persiconi, Irene
,
Fragapane, Paola
,
Bozzoni, Irene
in
Adrenal Cortex Hormones
,
Adrenal Cortex Hormones - metabolism
,
Amygdala
2013
The amygdala is a brain structure considered a key node for the regulation of neuroendocrine stress response. Stress-induced response in amygdala is accomplished through neurotransmitter activation and an alteration of gene expression. MicroRNAs (miRNAs) are important regulators of gene expression in the nervous system and are very well suited effectors of stress response for their ability to reversibly silence specific mRNAs. In order to study how acute stress affects miRNAs expression in amygdala we analyzed the miRNA profile after two hours of mouse restraint, by microarray analysis and reverse transcription real time PCR. We found that miR-135a and miR-124 were negatively regulated. Among in silico predicted targets we identified the mineralocorticoid receptor (MR) as a target of both miR-135a and miR-124. Luciferase experiments and endogenous protein expression analysis upon miRNA upregulation and inhibition allowed us to demonstrate that mir-135a and mir-124 are able to negatively affect the expression of the MR. The increased levels of the amygdala MR protein after two hours of restraint, that we analyzed by western blot, negatively correlate with miR-135a and miR-124 expression. These findings point to a role of miR-135a and miR-124 in acute stress as regulators of the MR, an important effector of early stress response.
Journal Article
Effect of Hydrated Deep Eutectic Solvents on the Thermal Stability of DNA
by
Rossi, Barbara
,
Mancini, Ines
,
Mele, Andrea
in
Aqueous solutions
,
Biodegradability
,
Biomolecules
2021
DNA’s structure stability in hydrated deep eutectic solvents (DESs) is getting growing attention for emerging bio-applications. The employment of DESs as novel co-solvents in water media could favor eco-friendly and biodegradable materials for DNA storage and handling. Understanding the molecular interactions between nucleic acids and aqueous DES is crucial for developing new-generation solvents for biomolecules. In this work, we exploit the molecular sensitivity and selectivity of synchrotron radiation UV resonance raman (SR-UVRR) spectroscopy to explore the interplay between a choline chloride:urea (ChCl:U) DES and double-stranded DNA. Our study analyzes the impact of ChCl:U on the DNA’s thermal unfolding pathway by focusing on the guanine nucleobases whose Raman signal could be strongly enhanced through careful tuning of the excitation wavelength.
Journal Article