Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
164 result(s) for "Mitsuya, Hiroaki"
Sort by:
Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2
The in vitro activity of monoclonal antibodies and antiviral agents was assessed against the sublineages of the SARS-CoV-2 variant of concern omicron (BA.1, BA.1.1, and BA.2). Variable activity of the monoclonal antibodies was observed.
Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant
Investigators assessed the in vitro activities of seven monoclonal antibodies and three antiviral drugs against Covid-19 variants of concern. All the antibodies showed either no or weak neutralizing activity against the omicron variant; two agents that target the RNA polymerase and a protease inhibitor were effective at omicron neutralization.
Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development
At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2−infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2−infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.
Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2
The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants 1 , 2 . The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries 3 . Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone 4 , we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants. Isolates of authentic SARS-CoV-2 variants BA.1 and BA.2 exhibit similar infectivity and pathogenicity and show susceptibility to neutralizing therapeutic antibodies and antiviral compounds in mouse and hamster models.
A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies
The quantitative range and reproducibility of current serological tests for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are not optimized. Herein, we developed a diagnostic test that detects SARS-CoV-2 IgG and IgM with high quantitativeness and reproducibility and low interference. The system was based on the high-sensitivity chemiluminescence enzyme immunoassay (HISCL) platform and detects IgG and IgM specific to SARS-CoV-2 spike and nucleocapsid proteins. Quantification accuracy and reproducibility were evaluated using serially diluted samples from 60 SARS-CoV-2-infected patients. Assay performance was evaluated using serum samples from the SARS-CoV-2-infected patients and 500 SARS-CoV-2-negative serum samples collected before the emergence of SARS-CoV-2. The system showed high quantification accuracy (range, 10 2 ), high reproducibility (within 5%), and no cross-reaction between SARS1- and MERS-S proteins. Detection accuracy was 98.3% and 93.3% for IgG and IgM against spike proteins and 100% and 71.7% for IgG and IgM against nucleocapsid proteins, respectively. Mean antibody levels were > 10 times that in negative samples upon admission and > 100 times that at convalescent periods. Clinical severity upon admission was not correlated with IgG or IgM levels. This highly quantitative, reproducible assay system with high clinical performance may help analyze temporal serological/immunological profiles of SARS-CoV-2 infection and SARS-CoV-2 vaccine effectiveness.
A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication
Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (M pro ). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC 50 values of 15 ± 4 and 4.2 ± 0.7 μM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with M pro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead M pro inhibitor for the development of therapeutics for SARS-CoV-2 infection. Here, using in vitro assays and structural analysis, the authors characterize the anti-SARS-CoV-2 properties of two small molcules, showing these to bind and target the virus main protease (M pro ), and to exhibit a synergistic antiviral effect when combined with remdesivir in vitro.
Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals
While mRNA vaccines against SARS-CoV-2 are exceedingly effective in preventing symptomatic infection, their immune response features remain to be clarified. In the present prospective study, 225 healthy individuals in Japan, who received two BNT162b2 doses, were enrolled. Correlates of BNT162b2-elicited SARS-CoV-2-neutralizing activity (50% neutralization titer: NT 50 ; assessed using infectious virions) with various determinants were examined and the potency of sera against variants of concerns was determined. Significant rise in NT 50 s was seen in sera on day 28 post-1st dose. A moderate inverse correlation was seen between NT 50 s and ages, but no correlation seen between NT 50 s and adverse effects. NT 50 s and SARS-CoV-2-S1-binding-IgG levels on day 28 post-1st dose and pain scores following the 2nd dose were greater in women than in men. The average half-life of NT 50 s was ~ 68 days, and 23.6% (49 out of 208 individuals) failed to show detectable neutralizing activity on day 150. While sera from elite-responders (NT 50 s > 1,500: the top 4% among the participants) potently to moderately blocked all variants of concerns examined, some sera with low NT 50 s failed to block the B.1.351-beta strain. Since BNT162b2-elicited immunity against SARS-CoV-2 is short, an additional vaccine or other protective measures are needed.
Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma
While there are various attempts to administer COVID-19-convalescent plasmas to SARS-CoV-2-infected patients, neither appropriate approach nor clinical utility has been established. We examined the presence and temporal changes of the neutralizing activity of IgG fractions from 43 COVID-19-convalescent plasmas using cell-based assays with multiple endpoints. IgG fractions from 27 cases (62.8%) had significant neutralizing activity and moderately to potently inhibited SARS-CoV-2 infection in cell-based assays; however, no detectable neutralizing activity was found in 16 cases (37.2%). Approximately half of the patients (~ 41%), who had significant neutralizing activity, lost the neutralization activity within ~ 1 month. Despite the rapid decline of neutralizing activity in plasmas, good amounts of SARS-CoV-2-S1-binding antibodies were persistently seen. The longer exposure of COVID-19 patients to greater amounts of SARS-CoV-2 elicits potent immune response to SARS-CoV-2, producing greater neutralization activity and SARS-CoV-2-S1-binding antibody amounts. The dilution of highly-neutralizing plasmas with poorly-neutralizing plasmas relatively readily reduced neutralizing activity. The presence of good amounts of SARS-CoV-2-S1-binding antibodies does not serve as a surrogate ensuring the presence of good neutralizing activity. In selecting good COVID-19-convalescent plasmas, quantification of neutralizing activity in each plasma sample before collection and use is required.
Comparison of Rapid Antigen Tests for COVID-19
Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose coronavirus disease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT-qPCR testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding infectious SARS-CoV-2.
Neutralization against Omicron sublineages (BA.2/BA.5/BQ.1.1/XBB/XBB.1.5) in bivalent BNT162b2-vaccinated HCWs with or without risk factors, or following BT infection with Omicron
SARS-CoV-2-BA.4/5-adapted-bivalent-BNT162b2-vaccine ( bv BNT), developed in response to the recent emergence of immune-evasive Omicron-variants, has been given to individuals who completed at least 2-doses of the monovalent-BNT162b2-vaccine ( mv BNT). In the present cohort study, we evaluated neutralization-titers (NT 50 s) against Wuhan-strain (SCoV2 Wuhan ) and Omicron-sublineages including BA.2/BA.5/BQ.1.1/XBB/XBB.1.5, and vaccine-elicited S1-binding-IgG in sera from participants-vaccinated with 5th- bv BNT following 4th- mv BNT. The 5th- bv BNT-dose elicited good protective-activity against SCoV2 Wuhan with geometric-mean (gMean)-NT 50 of 1966–2091, higher than the peak-values post-4th- mv BNT with no statistical significance, and favorable neutralization-activity against not only BA.5 but also BA.2, with ~ 3.2-/~ 2.2-fold greater gMean-NT 50 compared to the peak-values post-4th- mv BNT-dose, in participants with or without risk factors. However, neutralization-activity of sera post-5th- bv BNT-dose was low against BQ.1.1/XBB/XBB.1.5. Interestingly, participants receiving bv BNT following breakthrough (BT) infection during Omicron-wave had significantly enhanced neutralization-activity against SCoV2 Wuhan /BA.2/BA.5 with ~ 4.6-/~ 6.3-/~ 8.1-fold greater gMean-NT 50 , respectively, compared to uninfected participants receiving bv BNT. Sera from BT-infected-participants receiving bv BNT had enhanced neutralization-activity against BQ.1.1/XBB/XBB.1.5 by ~ 3.8-fold compared to those from the same participants post-4th- mv BNT-dose, and had enhanced gMean-NT 50 ~ 5.4-fold greater compared to those of uninfected-participants’ sera post- bv BNT. These results suggest that repeated stimulation brought about by exposure to BA.5’s-Spike elicit favorable cross-neutralization-activity against various SARS-CoV-2-variants.