Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Miyunga, Antoinette A."
Sort by:
Molecular surveillance of spotted fever group rickettsioses in wildlife and detection of Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela) in Kenya
Spotted fever group rickettsioses are a group of tick-borne zoonotic diseases caused by intracellular bacteria of the genus Rickettsia. The diseases are widely reported amongst international travellers returning from most sub-Saharan Africa with fever, yet their importance in local populations largely remains unknown. Although this has started to change and recently there have been increasing reports of the diseases in livestock, ticks and humans in Kenya, they have not been investigated in wildlife. We examined the presence, prevalence and species of Rickettsia present in wildlife in two regions of Kenya with a unique human–wildlife–livestock interface. For this purpose, 79 wild animals in Laikipia County and 73 in Maasai Mara National Reserve were sampled. DNA extracted from blood was tested using the polymerase chain reaction (PCR) to amplify the intergenic spacer rpmE-tRNAfMet and the citrate synthase-encoding gene gltA. Rickettsial DNA was detected in 2 of the 79 (2.5%) animals in Laikipia and 4 of the 73 (5.5%) in Maasai Mara. The PCR-positive amplicons of the gltA gene were sequenced to determine the detected Rickettsia species. This revealed Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela). This is the first report of spotted fever group rickettsioses in wildlife and the first to report R. sibirica in Kenya. The finding demonstrates the potential role of wild animals in the circulation of the diseases.
Clinical Evaluation of Corridor Disease in Bos indicus (Boran) Cattle Naturally Infected With Buffalo-Derived Theileria parva
Corridor disease (CD) is a fatal condition of cattle caused by buffalo-derived Theileria parva . Unlike the related condition, East Coast fever, which results from infection with cattle-derived T. parva , CD has not been extensively studied. We describe in detail the clinical and laboratory findings in cattle naturally infected with buffalo-derived T. parva . Forty-six cattle were exposed to buffalo-derived T. parva under field conditions at the Ol Pejeta Conservancy, Kenya, between 2013 and 2018. The first signs of disease observed in all animals were nasal discharge (mean day of onset was 9 days post-exposure), enlarged lymph nodes (10 days post-exposure), and pyrexia (13.7 days post-exposure). Coughing and labored breathing were observed in more than 50% of animals (14 days post-exposure). Less commonly observed signs, corneal edema (22%) and diarrhea (11%), were observed later in the disease progression (19 days post-exposure). All infections were considered clinically severe, and 42 animals succumbed to infection. The mean time to death across all studies was 18.4 days. The mean time from onset of clinical signs to death was 9 days and from pyrexia to death was 4.8 days, indicating a relatively short duration of clinical illness. There were significant relationships between days to death and the days to first temperature (chi 2 = 4.00, p = 0.046), and days to peak temperature (chi 2 = 25.81, p = 0.001), animals with earlier onset pyrexia died sooner. These clinical indicators may be useful for assessing the severity of disease in the future. All infections were confirmed by the presence of macroschizonts in lymph node biopsies (mean time to parasitosis was 11 days). Piroplasms were detected in the blood of two animals (4%) and 20 (43%) animals seroconverted. In this study, we demonstrate the successful approach to an experimental field study for CD in cattle. We also describe the clinical progression of CD in naturally infected cattle, including the onset and severity of clinical signs and pathology. Laboratory diagnoses based on examination of blood samples are unreliable, and alternatives may not be available to cattle keepers. The rapid development of CD requires recognition of the clinical signs, which may be useful for early diagnosis of the disease and effective intervention for affected animals.
A locus conferring tolerance to Theileria infection in African cattle
East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.
Molecular surveillance of spotted fever group rickettsioses in wildlife and detection of
Spotted fever group rickettsioses are a group of tick-borne zoonotic diseases caused by intracellular bacteria of the genus Rickettsia. The diseases are widely reported amongst international travellers returning from most sub-Saharan Africa with fever, yet their importance in local populations largely remains unknown. Although this has started to change and recently there have been increasing reports of the diseases in livestock, ticks and humans in Kenya, they have not been investigated in wildlife. We examined the presence, prevalence and species of Rickettsia present in wildlife in two regions of Kenya with a unique human–wildlife–livestock interface. For this purpose, 79 wild animals in Laikipia County and 73 in Maasai Mara National Reserve were sampled. DNA extracted from blood was tested using the polymerase chain reaction (PCR) to amplify the intergenic spacer rpmE-tRNA fMet and the citrate synthase-encoding gene gltA. Rickettsial DNA was detected in 2 of the 79 (2.5%) animals in Laikipia and 4 of the 73 (5.5%) in Maasai Mara. The PCR-positive amplicons of the gltA gene were sequenced to determine the detected Rickettsia species. This revealed Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela). This is the first report of spotted fever group rickettsioses in wildlife and the first to report R. sibirica in Kenya. The finding demonstrates the potential role of wild animals in the circulation of the diseases.
Inherited Tolerance in Cattle to the Apicomplexan Protozoan Theileria parva is Associated with Decreased Proliferation of Parasite-Infected Lymphocytes
Theileria parva is the causative agent of East Coast fever and Corridor disease, which are fatal, economically important diseases of cattle in eastern, central and southern Africa. Improved methods of control of the diseases are urgently required. The parasite transforms host lymphocytes, resulting in a rapid, clonal expansion of infected cells. Resistance to the disease has long been reported in cattle from T. parva -endemic areas. We reveal here that first- and second-generation descendants of a single Bos indicus bull survived severe challenge with T. parva , (overall survival rate 57.3% compared to 8.7% for unrelated animals) in a series of five field studies. Tolerant cattle displayed a delayed and less severe parasitosis and febrile response than unrelated animals. The in vitro proliferation of cells from surviving cattle was much reduced compared to those from animals that succumbed to infection. Additionally, some pro-inflammatory cytokines such as IL1β, IL6, TNFα or TGFβ which are usually strongly expressed in susceptible animals and are known to regulate cell growth or motility, remain low in tolerant animals. This correlates with the reduced proliferation and less severe clinical reactions observed in tolerant cattle. The results show for the first time that the inherited tolerance to T. parva is associated with decreased proliferation of infected lymphocytes. The results are discussed in terms of whether the reduced proliferation is the result of a perturbation of the transformation mechanism induced in infected cells or is due to an innate immune response present in the tolerant cattle.
A locus conferring tolerance to Theileria infection in African cattle
East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T . parva ( h 2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T . parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T . parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa’s most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T . parva .
A locus conferring tolerance to Theileria infection in African cattle
East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Boran cattle demonstrating heritable tolerance to infection by T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on Bos taurus chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained polymorphism in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva. Competing Interest Statement The Centre for Tropical Livestock Genetics and Health (CTLGH) has filed a patent application regarding the use of this locus in improving cattle through methods such as marker assisted breeding. Footnotes * Relative risk updated. Covariates used in fitting model on IDEAL data clarified. * https://doi.org/10.7488/ds/2985