Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
730
result(s) for
"Monticelli, A"
Sort by:
IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions
by
Monticelli, Laurel A.
,
Artis, David
,
Osborne, Lisa C.
in
Amphiregulin
,
Animals
,
Biological Sciences
2015
The barrier surfaces of the skin, lung, and intestine are constantly exposed to environmental stimuli that can result in inflammation and tissue damage. Interleukin (IL)-33–dependent group 2 innate lymphoid cells (ILC2s) are enriched at barrier surfaces and have been implicated in promoting inflammation; however, the mechanisms underlying the tissue-protective roles of IL-33 or ILC2s at surfaces such as the intestine remain poorly defined. Here we demonstrate that, following activation with IL-33, expression of the growth factor amphiregulin (AREG) is a dominant functional signature of gut-associated ILC2s. In the context of a murine model of intestinal damage and inflammation, the frequency and number of AREG-expressing ILC2s increases following intestinal injury and genetic disruption of the endogenous AREG–epidermal growth factor receptor (EGFR) pathway exacerbated disease. Administration of exogenous AREG limited intestinal inflammation and decreased disease severity in both lymphocyte-sufficient and lymphocyte-deficient mice, revealing a previously unrecognized innate immune mechanism of intestinal tissue protection. Furthermore, treatment with IL-33 or transfer of ILC2s ameliorated intestinal disease severity in an AREG-dependent manner. Collectively, these data reveal a critical feedback loop in which cytokine cues from damaged epithelia activate innate immune cells to express growth factors essential for ILC-dependent restoration of epithelial barrier function and maintenance of tissue homeostasis.
Journal Article
β2-adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses
by
Yudanin, Naomi A
,
Putzel Gregory Garbès
,
Moeller, Jesper B
in
Adrenergic receptors
,
Allergens
,
Anatomy
2018
An off switch for helminth immunityGroup 2 innate lymphoid cells (ILC2s) are involved in responses to helminths, viruses, and allergens. Moriyama et al. found that ILC2s interact with the nervous system to modulate helminth immunity. ILC2s from the small intestine expressed the β2-adrenergic receptor (β2AR), which normally interacts with the neurotransmitter epinephrine. Inactivating β2AR resulted in lower helminth burden and more ILC2s, eosinophils, and type 2 cytokine production in mice. Conversely, treatment of helminth-infected mice with a β2AR agonist enhanced worm burden and reduced proliferation of ILC2s. Thus, β2AR negatively regulates ILC2-driven protective immunity.Science, this issue p. 1056The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β2-adrenergic receptor (β2AR) and colocalize with adrenergic neurons in the intestine. β2AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β2AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β2AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation.
Journal Article
Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity
2015
Group 2 innate lymphoid cells are shown to have a critical role in energy homeostasis by producing methionine-enkephalin peptides in response to interleukin 33, thus promoting the beiging of white adipose tissue; increased numbers of beige (also known as brown-like or brite) fat cells in white adipose tissue leads to increased energy expenditure and decreased adiposity.
Innate lymphoid cells drive energy up, adiposity down
The immune system is now thought to be involved in the development of obesity, together with genetic and environmental factors. Recent research identified group 2 innate lymphoid cells (ILC2s) in adipose tissue as a factor in the development of obesity in mice. David Artis and colleagues show here that ILC2s play a critical role in energy homeostasis by producing methionine-enkephalin peptides in response to interleukin-33. This promotes the emergence of beige adipocytes, a specialized adipocyte population arising from white adipose tissue. This 'beiging' process leads to increased energy expenditure and decreased adiposity.
Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity
1
,
2
. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity
3
,
4
and eosinophil and alternatively activated macrophage responses
5
, and were recently identified in murine white adipose tissue (WAT)
5
where they may act to limit the development of obesity
6
. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)
+
beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure
7
,
8
,
9
. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate
Ucp1
expression
in vitro
and that promote beiging
in vivo
. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.
Journal Article
The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung
2015
Group 2 innate lymphoid cells (ILC2s) promote type 2 cytokine-dependent immunity, inflammation, and tissue repair. Although epithelial cell-derived cytokines regulate ILC2 effector functions, the pathways that control the in vivo migration of ILC2s into inflamed tissues remain poorly understood. Here, we provide the first demonstration that expression of the prostaglandin D2 (PGD2) receptor CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) regulates the in vivo accumulation of ILC2s in the lung. Although a significant proportion of ILC2s isolated from healthy human peripheral blood expressed CRTH2, a smaller proportion of ILC2s isolated from nondiseased human lung expressed CRTH2, suggesting that dynamic regulation of CRTH2 expression might be associated with the migration of ILC2s into tissues. Consistent with this, murine ILC2s expressed CRTH2, migrated toward PGD2in vitro, and accumulated in the lung in response to PGD2in vivo. Furthermore, mice deficient in CRTH2 exhibited reduced ILC2 responses and inflammation in a murine model of helminth-induced pulmonary type 2 inflammation. Critically, adoptive transfer of CRTH2-sufficient ILC2s restored pulmonary inflammation in CRTH2-deficient mice. Together, these data identify a role for the PGD2–CRTH2 pathway in regulating the in vivo accumulation of ILC2s and the development of type 2 inflammation in the lung.
Journal Article
Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation
2016
The cell-intrinsic pathways controlling the function of innate lymphoid cells are poorly defined. Artis and colleagues demonstrate that ILC2s selectively express arginase 1 and that this is critical for their bioenergetics, proliferation and function.
Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.
Journal Article
Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria
by
Monticelli, Laurel A.
,
Sonnenberg, Gregory F.
,
Tardif, Mélanie R.
in
Adult
,
Alcaligenes
,
Alcaligenes - immunology
2012
The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)-producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn's disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.
Journal Article
Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation
by
Monticelli, Laurel A.
,
Nice, Timothy J.
,
Osborne, Lisa C.
in
Antivirals
,
Coinfection
,
Containment
2014
The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.
Journal Article
Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity
by
Monticelli, Laurel A.
,
Wolf, Amaya I.
,
Laidlaw, Brian J.
in
Adaptive Immunity
,
Animals
,
Antibodies
2013
Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential \"universal\" vaccine.
Journal Article
The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation
2017
Intestinal type 2 innate lymphoid cells express the neuropeptide receptor NMUR1, which makes them responsive to neuronal neuromedin U, thereby promoting a type 2 cytokine response and accelerated expulsion of the gastro-intestinal nematode
Nippostrongylus brasiliensis
.
Neuron regulation of immune cells
Group 2 innate lymphoid cells (ILC2s) are entangled with cholinergic SNAP-25-expressing neurons. David Artis and colleagues report that ILC2s express the neuropeptide receptor NMUR1, making them responsive to neuronal neuromedin. In mice, this promoted a tissue-protective type 2 response and accelerated expulsion of the gastrointestinal nematode
Nippostrongylus brasiliensis
. Elsewhere in this issue, Henrique Veiga-Fernandes and colleagues also provide evidence that ILC2s express
Nmur1
and respond to neuromedin expressed by adjacent enteric neurons. In mice, the interaction results in an enhanced and immediate response of ILC2s to infection by the parasite
N. brasiliensis
.
The type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have important roles in stimulating innate and adaptive immune responses that are required for resistance to helminth infection, promotion of allergic inflammation, metabolic homeostasis and tissue repair
1
,
2
,
3
. Group 2 innate lymphoid cells (ILC2s) produce type 2 cytokines, and although advances have been made in understanding the cytokine milieu that promotes ILC2 responses
4
,
5
,
6
,
7
,
8
,
9
, how ILC2 responses are regulated by other stimuli remains poorly understood. Here we demonstrate that ILC2s in the mouse gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU)
10
,
11
. In contrast to other haematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1).
In vitro
stimulation of ILC2s with NMU induced rapid cell activation, proliferation, and secretion of the type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and G
αq
protein.
In vivo
administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode
Nippostrongylus brasiliensis
or induction of lung inflammation. Conversely, worm burden was higher in
Nmur1
−/−
mice than in control mice. Furthermore, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU–NMUR1 neuronal signalling circuit provides a selective mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites.
Journal Article
Transcriptional regulator Id2 controls survival of hepatic NKT cells
by
Goldrath, Ananda W
,
Kronenberg, Mitchell
,
Knell, Jamie
in
Accumulation
,
adaptive immunity
,
Animals
2009
Natural killer T cells expressing an invariant T-cell receptor (iNKT) regulate activation of both innate and adaptive immunity in many contexts. iNKT cells accumulate in the liver and rapidly produce prodigious amounts of numerous cytokines upon activation, impacting the immune response to viral infection, immunosurveillance for malignant cells, and liver regeneration. However, little is known about the factors controlling iNKT homeostasis, survival and hepatic localization. Here, we report that the absence of the transcriptional regulator Id2 resulted in a severe, intrinsic defect in the accumulation of hepatic iNKT cells. Id2-deficient iNKT cells showed increased cell death in the liver, although migration and functional activity were not impaired in comparison to Id2-expressing iNKT cells. Id2-deficient iNKT cells exhibited diminished expression of CXCR6, a critical determinant of iNKT cell accumulation in the liver, and of the anti-apoptotic molecules bcl-2 and bcl-XL, compared to Id2-sufficient iNKT cells. Furthermore, survival and accumulation of iNKT cells lacking Id2 expression was rescued by deficiency in bim, a key pro-apoptotic molecule. Thus, Id2 was necessary to establish a hepatic iNKT cell population, defining a role for Id2 and implicating the Id targets, E protein transcription factors, in the regulation of iNKT cell homeostasis.
Journal Article