Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Morin, Theodore J."
Sort by:
3D integration enables ultralow-noise isolator-free lasers in silicon photonics
Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon. Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.
Extending the spectrum of fully integrated photonics to submicrometre wavelengths
Integrated photonics has profoundly affected a wide range of technologies underpinning modern society 1 – 4 . The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency 5 , 6 . Over the last decade, the progression from pure III–V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry 7 , 8 . Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III–V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.  Fully integrated photonics at submicrometre wavelengths is realized by a heterogeneous integration technology.
Integrated Pockels laser
The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 10 18 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR. On-Chip integration of laser systems led to impressive development in many field of application like LIDAR or AR/VR to cite a few. Here the authors harness Pockels effect in an integrated semiconductor platform achieving fast on-chip configurability of a narrow linewidth laser.
Unified laser stabilization and isolation on a silicon chip
Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers—noise reduction and isolation—can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies. Both laser stabilization and isolation are demonstrated simultaneously by using Kerr nonlinearity in a high- Q silicon nitride ring resonator to self-injection lock a distributed-feedback laser, bringing on-chip lasers closer to real-world fully integrated applications.
A photonic integrated circuit for heterogeneous second harmonic generation
Heterogeneous integration of GaAs-based lasers with frequency doubling waveguides presents a clear path to scalable coherent sources in the so-called green gap, yet frequency doubling systems have so far relied on separately manufactured lasers to deliver enough power for second harmonic generation. In this work, we propose a photonic integrated circuit (PIC) which alleviates the performance requirements for integrated frequency doublers. Two gain sections are connected by waveguides, with a frequency converter and a wavelength separator in between. The fundamental light circulates between the gain sections until it is converted and emitted through the wavelength separator. Variants of this separated gain PIC are discussed, and the PIC is implemented with thin film lithium niobate and directly bonded GaAs-based lasers, coupled by on-chip facets and adiabatic tapers, realizing visible light generation in the 515-595 nm range.
Integrated Pockels Laser
The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0\\(\\times\\)10\\(^{18}\\) Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.
Unified laser stabilization and isolation on a silicon chip
Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale; heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main ingredients for high-performance lasers -- noise reduction and isolation -- currently requiring serial combination of incompatible technologies, can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device. To do this, we take advantage of both the long photon lifetime and the nonreciprocal Kerr nonlinearity of a high quality factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. Additionally, we identify a previously unappreciated power regime limitation of current on-chip laser architectures which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies.
Three-dimensional integration enables ultra-low-noise, isolator-free Si photonics
While photonic integrated circuits (PICs) are being widely used in applications such as telecommunications and datacenter interconnects, PICs capable of replacing bulk optics and fibers in high-precision, highly-coherent applications will require ultra-low-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format -- that is, on a single chip. Such PICs could offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. However, there are two major issues preventing the realization of such envisioned PICs: the high phase noise of semiconductor lasers, and the difficulty of integrating optical isolators directly on chip. PICs are still considered as inferior solutions in optical systems such as microwave synthesizers, optical gyroscopes and atomic clocks, despite their advantages in size, weight, power consumption and cost (SWaPC). Here, we challenge this convention by introducing three-dimensional (3D) integration in silicon photonics that results in ultra-low-noise, isolator-free PICs. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III-V gain and ultra-low-loss (ULL) silicon nitride (SiN) waveguides with optical loss around 0.5 dB/m are demonstrated. Consequently, the demonstrated PIC enters a new regime, such that an integrated ultra-high-Q cavity reduces the laser noise close to that of fiber lasers. Moreover, the cavity acts as an effective block for any downstream on-chip or off-chip reflection-induced destabilization, thus eliminating the need for optical isolators. We further showcase isolator-free, widely-tunable, low-noise, heterodyne microwave generation using two ultra-low-noise lasers on the same silicon chip.
Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data
Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ~80% of the known relationships without any false positives.
Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data
Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ~80% of the known relationships without any false positives.