Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
250 result(s) for "Morrison, Neil"
Sort by:
Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori
Transgene-based genetic sexing methods are being developed for insects of agricultural and public health importance. Male-only rearing has long been sought in sericulture because males show superior economic characteristics, such as better fitness, lower food consumption, and higher silk yield. Here we report the establishment of a transgene-based genetic sexing system for the silkworm, Bombyx mori . We developed a construct in which a positive feedback loop regulated by sex-specific alternative splicing leads to high-level expression of the tetracycline-repressible transactivator in females only. Transgenic animals show female-specific lethality during embryonic and early larval stages, leading to male-only cocoons. This transgene-based female-specific lethal system not only has wide application in sericulture, but also has great potential in lepidopteran pest control.
Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management
Background The fall armyworm, Spodoptera frugiperda , is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins ( Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt -susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. Results Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non- Bt ‘refuge’ crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. Conclusions This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.
First Field Release of a Genetically Engineered, Self-Limiting Agricultural Pest Insect: Evaluating Its Potential for Future Crop Protection
Alternative, biologically-based approaches for pest management are sorely needed and one approach is to use genetically engineered insects. Herein we describe a series of integrated field, laboratory and modeling studies with the diamondback moth, , a serious global pest of crucifers. A \"self-limiting\" strain of (OX4319L), genetically engineered to allow the production of male-only cohorts of moths for field releases, was developed as a novel approach to protect crucifer crops. Wild-type females that mate with these self-limiting males will not produce viable female progeny. Our previous greenhouse studies demonstrated that releases of OX4319L males lead to suppression of the target pest population and dilution of insecticide-resistance genes. We report results of the first open-field release of a non-irradiated, genetically engineered self-limiting strain of an agricultural pest insect. In a series of mark-release-recapture field studies with co-releases of adult OX4319L males and wild-type counterparts, the dispersal, persistence and field survival of each strain were measured in a 2.83 ha cabbage field. In most cases, no differences were detected in these parameters. Overall, 97.8% of the wild-type males and 95.4% of the OX4319L males recaptured dispersed <35 m from the release point. The predicted persistence did not differ between strains regardless of release rate. With 95% confidence, 75% of OX4319L males released at a rate of 1,500 could be expected to live between 3.5 and 5.4 days and 95% of these males could be expected to be detected within 25.8-34.9 m from the release point. Moth strain had no effect on field survival but release rate did. Collectively, these results suggest similar field behavior of OX4319L males compared to its wild-type counterpart. Laboratory studies revealed no differences in mating competitiveness or intrinsic growth rates between the strains and small differences in longevity. Using results from these studies, mathematical models were developed that indicate release of OX4319L males should offer efficacious pest management of . Further field studies are recommended to demonstrate the potential for this self-limiting to provide pest suppression and resistance management benefits, as was previously demonstrated in greenhouse studies.
Viscoelasticity in inkjet printing
We investigate the effects of viscoelasticity on drop generation in inkjet printing. In drop-on-demand printing, individual ink ‘drops’ are ejected from a nozzle by imposed pressure pulses. Upon exiting the nozzle, the shape of each ‘drop’ is that of a nearly spherical bead with a long thin trailing ligament. This ligament subsequently breaks up under the Rayleigh instability, typically into several small droplets (known as satellite drops). These satellite drops can create unwanted splash on the target substrate and a reduction in printing quality. Satellite drops can potentially be eliminated by adding polymer to the ink; elastic stresses can act to contract the trailing ligament into the main drop before capillary breakup occurs. However, elasticity can also reduce the drop velocity and can delay or even prevent the break-off of the drop from the ink reservoir within the nozzle. To achieve optimal drop shape and speed, non-Newtonian parameters such as the polymer concentration and molecular weight must be chosen correctly. We explore this parameter space via numerical simulations, using the Lagrangian–Eulerian finite-element method of Harlen et al. (J Non-Newtonian Fluid Mech 60:81–104, 1995 ). Results are compared with experimental observations taken from real printheads.
Association of Opioids and Sedatives with Increased Risk of In-Hospital Cardiopulmonary Arrest from an Administrative Database
While opioid use confers a known risk for respiratory depression, the incremental risk of in-hospital cardiopulmonary arrest, respiratory arrest, or cardiopulmonary resuscitation (CPRA) has not been studied. Our aim was to investigate the prevalence, outcomes, and risk profile of in-hospital CPRA for patients receiving opioids and medications with central nervous system sedating side effects (sedatives). A retrospective analysis of adult inpatient discharges from 2008-2012 reported in the Premier Database. Patients were grouped into four mutually exclusive categories: (1) opioids and sedatives, (2) opioids only, (3) sedatives only, and (4) neither opioids nor sedatives. Among 21,276,691 inpatient discharges, 53% received opioids with or without sedatives. A total of 96,554 patients suffered CPRA (0.92 per 1000 hospital bed-days). Patients who received opioids and sedatives had an adjusted odds ratio for CPRA of 3.47 (95% CI: 3.40-3.54; p<0.0001) compared with patients not receiving opioids or sedatives. Opioids alone and sedatives alone were associated with a 1.81-fold and a 1.82-fold (p<0.0001 for both) increase in the odds of CPRA, respectively. In opioid patients, locations of CPRA were intensive care (54%), general care floor (25%), and stepdown units (15%). Only 42% of patients survived CPRA and only 22% were discharged home. Opioid patients with CPRA had mean increased hospital lengths of stay of 7.57 days and mean increased total hospital costs of $27,569. Opioids and sedatives are independent and additive risk factors for in-hospital CPRA. The impact of opioid sparing analgesia, reduced sedative use, and better monitoring on CPRA incidence deserves further study.
Female-specific insect lethality engineered using alternative splicing
The Sterile Insect Technique is a species-specific and environmentally friendly method of pest control involving mass release of sterilized insects that reduce the wild population through infertile matings 1 , 2 , 3 , 4 , 5 . Insects carrying a female-specific autocidal genetic system offer an attractive alternative to conventional sterilization methods 6 , 7 while also eliminating females from the release population 7 , 8 , 9 , 10 . We exploited sex-specific alternative splicing in insects to engineer female-specific autocidal genetic systems in the Mediterranean fruit fly, Ceratitis capitata . These rely on the insertion of cassette exons from the C. capitata transformer gene into a heterologous tetracycline-repressible transactivator such that the transactivator transcript is disrupted in male splice variants but not in the female-specific one. As the key components of these systems function across a broad phylogenetic range, this strategy addresses the paucity of sex-specific expression systems (e.g., early-acting, female-specific promoters) in insects other than Drosophila melanogaster . The approach may have wide applicability for regulating gene expression in other organisms, particularly for combinatorial control with appropriate promoters.
Field Performance of a Genetically Engineered Strain of Pink Bollworm
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Response to a Synthetic Pheromone Source by OX4319L, a Self-Limiting Diamondback Moth (Lepidoptera: Plutellidae) Strain, and Field Dispersal Characteristics of its Progenitor Strain
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a global pest that infests vegetable and field crops within the Brassica family. A genetically engineered strain of P. xylostella, OX4319L, carrying a ‘self-limiting’ gene, has shown potential for managing P. xylostella populations, using sustained releases of OX4319L male moths. In order for such a strain to provide control, the transgenic individuals must exhibit attraction to female P. xylostella sex pheromone and adequate dispersal in the field. In this study, we tested these key traits. First, we compared the responses of the OX4319L male moths to a synthetic female sex pheromone source in wind tunnel trials to those of males from three other strains. We found that OX4319L males responded comparably to strains of non-engineered males, with all males flying upwind towards the pheromone source. Second, we used mark-release-recapture studies of a wildtype P. xylostella strain, from which the OX4319L strain was originally developed, to assess dispersal under field conditions. Released males were recaptured using both pheromone-baited and passive traps within a 2.83 ha circular cabbage field, with a recapture rate of 7.93%. Males were recaptured up to the boundary of the field at 95 m from the central release point. The median dispersal of males was 14 m. These results showed the progenitor strain of OX4319L retained its ability to disperse within a host field. The results of these experiments are discussed in relation to the potential for the effective use of engineered male-selecting P. xylostella strains under field conditions.
Recovering individual haplotypes and a contiguous genome assembly from pooled long-read sequencing of the diamondback moth (Lepidoptera: Plutellidae)
The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intralocus genetic variation, and interlocus similarity within these data. Here, we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph, and de Bruijn graph methods. We examine how postprocessing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that “best practice” is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and noncoding diversity between redundant sequences. We also document a link between an excess of nonsynonymous polymorphism and haplotigs that are unresolved by assembly or postassembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics.